logo

Съберете всички монети в минимален брой стъпки

Дадени са много купчини монети, които са подредени в съседство. Трябва да съберем всички тези монети в минималния брой стъпки, където в една стъпка можем да съберем една хоризонтална линия от монети или вертикална линия от монети и събраните монети трябва да бъдат непрекъснати.
Примери:  
 

  Input :   height[] = [2 1 2 5 1] Each value of this array corresponds to the height of stack that is we are given five stack of coins where in first stack 2 coins are there then in second stack 1 coin is there and so on.   Output :   4 We can collect all above coins in 4 steps which are shown in below diagram. Each step is shown by different color. First we have collected last horizontal line of coins after which stacks remains as [1 0 1 4 0] after that another horizontal line of coins is collected from stack 3 and 4 then a vertical line from stack 4 and at the end a horizontal line from stack 1. Total steps are 4.


 

свързан списък в java


Можем да разрешим този проблем с помощта на метода "разделяй и владей". Виждаме, че винаги е полезно да премахнете хоризонталните линии отдолу. Да предположим, че работим върху стекове от l индекс до r индекс в стъпка на рекурсия всеки път, когато ще изберем минимална височина, премахнем тези много хоризонтални линии, след което стекът ще бъде разделен на две части от l до минимум и минимум +1 до r и ще извикваме рекурсивно тези подмасиви. Друго нещо е, че можем също да събираме монети, използвайки вертикални линии, така че ще изберем минимум между резултата от рекурсивни извиквания и (r - l), защото използвайки (r - l) вертикални линии, винаги можем да съберем всички монети. 
Тъй като всеки път, когато извикваме всеки подмасив и намирането на минимум от тази обща времева сложност на решението ще бъде O(N2
 



C++
// C++ program to find minimum number of // steps to collect stack of coins #include    using namespace std; // recursive method to collect coins from // height array l to r with height h already // collected int minStepsRecur(int height[] int l int r int h) {  // if l is more than r no steps needed  if (l >= r)  return 0;  // loop over heights to get minimum height  // index  int m = l;  for (int i = l; i < r; i++)  if (height[i] < height[m])  m = i;  /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +   height[m] - h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array int minSteps(int height[] int N) {  return minStepsRecur(height 0 N 0); } // Driver code to test above methods int main() {  int height[] = { 2 1 2 5 1 };  int N = sizeof(height) / sizeof(int);  cout << minSteps(height N) << endl;  return 0; } 
Java
// Java Code to Collect all coins in // minimum number of steps import java.util.*; class GFG {  // recursive method to collect coins from  // height array l to r with height h already  // collected  public static int minStepsRecur(int height[] int l  int r int h)  {  // if l is more than r no steps needed  if (l >= r)  return 0;  // loop over heights to get minimum height  // index  int m = l;  for (int i = l; i < r; i++)  if (height[i] < height[m])  m = i;  /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return Math.min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +  height[m] - h);  }  // method returns minimum number of step to  // collect coin from stack with height in  // height[] array  public static int minSteps(int height[] int N)  {  return minStepsRecur(height 0 N 0);  }  /* Driver program to test above function */  public static void main(String[] args)  {  int height[] = { 2 1 2 5 1 };  int N = height.length;  System.out.println(minSteps(height N));  } } // This code is contributed by Arnav Kr. Mandal. 
Python 3
# Python 3 program to find  # minimum number of steps  # to collect stack of coins # recursive method to collect  # coins from height array l to  # r with height h already # collected def minStepsRecur(height l r h): # if l is more than r # no steps needed if l >= r: return 0; # loop over heights to  # get minimum height index m = l for i in range(l r): if height[i] < height[m]: m = i # choose minimum from # 1) collecting coins using  # all vertical lines (total r - l) # 2) collecting coins using  # lower horizontal lines and  # recursively on left and  # right segments  return min(r - l minStepsRecur(height l m height[m]) + minStepsRecur(height m + 1 r height[m]) + height[m] - h) # method returns minimum number # of step to collect coin from  # stack with height in height[] array def minSteps(height N): return minStepsRecur(height 0 N 0) # Driver code  height = [ 2 1 2 5 1 ] N = len(height) print(minSteps(height N)) # This code is contributed # by ChitraNayal 
C#
// C# Code to Collect all coins in // minimum number of steps using System; class GFG {  // recursive method to collect coins from  // height array l to r with height h already  // collected  public static int minStepsRecur(int[] height int l  int r int h)  {  // if l is more than r no steps needed  if (l >= r)  return 0;  // loop over heights to  // get minimum height index  int m = l;  for (int i = l; i < r; i++)  if (height[i] < height[m])  m = i;  /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return Math.Min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +  height[m] - h);  }  // method returns minimum number of step to  // collect coin from stack with height in  // height[] array  public static int minSteps(int[] height int N)  {  return minStepsRecur(height 0 N 0);  }  /* Driver program to test above function */  public static void Main()  {  int[] height = { 2 1 2 5 1 };  int N = height.Length;  Console.Write(minSteps(height N));  } } // This code is contributed by nitin mittal 
PHP
 // PHP program to find minimum number of // steps to collect stack of coins // recursive method to collect // coins from height array l to  // r with height h already // collected function minStepsRecur($height $l $r $h) { // if l is more than r // no steps needed if ($l >= $r) return 0; // loop over heights to // get minimum height // index $m = $l; for ($i = $l; $i < $r; $i++) if ($height[$i] < $height[$m]) $m = $i; /* choose minimum from  1) collecting coins using   all vertical lines   (total r - l)  2) collecting coins using   lower horizontal lines   and recursively on left  and right segments */ return min($r - $l minStepsRecur($height $l $m $height[$m]) + minStepsRecur($height $m + 1 $r $height[$m]) + $height[$m] - $h); } // method returns minimum number of step to // collect coin from stack with height in // height[] array function minSteps($height $N) { return minStepsRecur($height 0 $N 0); } // Driver Code $height = array(2 1 2 5 1); $N = sizeof($height); echo minSteps($height $N) ; // This code is contributed by nitin mittal. ?> 
JavaScript
<script> // Javascript Code to Collect all coins in // minimum number of steps    // recursive method to collect coins from  // height array l to r with height h already  // collected  function minStepsRecur(heightlrh)  {  // if l is more than r no steps needed  if (l >= r)  return 0;    // loop over heights to get minimum height  // index  let m = l;  for (let i = l; i < r; i++)  if (height[i] < height[m])  m = i;    /* choose minimum from  1) collecting coins using all vertical  lines (total r - l)  2) collecting coins using lower horizontal  lines and recursively on left and right  segments */  return Math.min(r - l  minStepsRecur(height l m height[m]) +   minStepsRecur(height m + 1 r height[m]) +  height[m] - h);  }    // method returns minimum number of step to  // collect coin from stack with height in  // height[] array  function minSteps(heightN)  {  return minStepsRecur(height 0 N 0);  }    /* Driver program to test above function */  let height=[2 1 2 5 1 ];  let N = height.length;  document.write(minSteps(height N));    // This code is contributed by avanitrachhadiya2155 </script> 

Изход:  
 

4

Времева сложност: Времевата сложност на този алгоритъм е O(N^2), където N е броят на елементите в масива с височина.

Космическа сложност: Пространствената сложност на този алгоритъм е O(N) поради рекурсивните извиквания, които се правят на масива с височина.


 

Създаване на тест