logo

Преброяване на успоредници в равнина

Дадени са точки на равнина, които са различни и нито една три от тях не лежат на една права. Трябва да намерим броя на успоредниците с върховете като дадените точки. Примери:

Input : points[] = {(0 0) (0 2) (2 2) (4 2) (1 4) (3 4)} Output : 2 Two Parallelograms are possible by choosing above given point as vertices which are shown in below diagram.

Можем да решим този проблем, като използваме специално свойство на успоредниците, че диагоналите на успоредник се пресичат по средата. Така че, ако получим такава средна точка, която е средна точка на повече от един сегмент, тогава можем да заключим, че успоредник съществува по-точно, ако средна точка се среща x пъти, тогава диагоналите на възможните успоредници могат да бъдат избрани вхВ2начини, т.е. ще има x*(x-1)/2 успоредника, съответстващи на тази конкретна средна точка с честота x. Така че ние итерираме всички двойки точки и изчисляваме тяхната средна точка и увеличаваме честотата на средната точка с 1. Накрая преброяваме броя на успоредниците според честотата на всяка отделна средна точка, както е обяснено по-горе. Тъй като просто се нуждаем от честота на разделяне на средната точка на 2, се игнорира при изчисляването на средната точка за простота. 

CPP
// C++ program to get number of Parallelograms we // can make by given points of the plane #include    using namespace std; // Returns count of Parallelograms possible // from given points int countOfParallelograms(int x[] int y[] int N) {  // Map to store frequency of mid points  map<pair<int int> int> cnt;  for (int i=0; i<N; i++)  {  for (int j=i+1; j<N; j++)  {  // division by 2 is ignored to get  // rid of doubles  int midX = x[i] + x[j];  int midY = y[i] + y[j];  // increase the frequency of mid point  cnt[make_pair(midX midY)]++;  }  }  // Iterating through all mid points  int res = 0;  for (auto it = cnt.begin(); it != cnt.end(); it++)  {  int freq = it->second;  // Increase the count of Parallelograms by  // applying function on frequency of mid point  res += freq*(freq - 1)/2;  }  return res; } // Driver code to test above methods int main() {  int x[] = {0 0 2 4 1 3};  int y[] = {0 2 2 2 4 4};  int N = sizeof(x) / sizeof(int);  cout << countOfParallelograms(x y N) << endl;  return 0; } 
Java
/*package whatever //do not write package name here */ import java.io.*; import java.util.*; public class GFG {    // Returns count of Parallelograms possible  // from given points  public static int countOfParallelograms(int[] x int[] y int N)  {  // Map to store frequency of mid points  HashMap<String Integer> cnt = new HashMap<>();  for (int i=0; i<N; i++)  {  for (int j=i+1; j<N; j++)  {  // division by 2 is ignored to get  // rid of doubles  int midX = x[i] + x[j];  int midY = y[i] + y[j];  // increase the frequency of mid point  String temp = String.join(' ' String.valueOf(midX) String.valueOf(midY));  if(cnt.containsKey(temp)){  cnt.put(temp cnt.get(temp) + 1);  }  else{  cnt.put(temp 1);  }  }  }  // Iterating through all mid points  int res = 0;  for (Map.Entry<String Integer> it : cnt.entrySet()) {  int freq = it.getValue();  // Increase the count of Parallelograms by  // applying function on frequency of mid point  res = res + freq*(freq - 1)/2;  }  return res;  }    public static void main(String[] args) {  int[] x = {0 0 2 4 1 3};  int[] y = {0 2 2 2 4 4};  int N = x.length;  System.out.println(countOfParallelograms(x y N));  } } // The code is contributed by Nidhi goel.  
Python3
# python program to get number of Parallelograms we # can make by given points of the plane # Returns count of Parallelograms possible # from given points def countOfParallelograms(x y N): # Map to store frequency of mid points cnt = {} for i in range(N): for j in range(i+1 N): # division by 2 is ignored to get # rid of doubles midX = x[i] + x[j]; midY = y[i] + y[j]; # increase the frequency of mid point if ((midX midY) in cnt): cnt[(midX midY)] += 1 else: cnt[(midX midY)] = 1 # Iterating through all mid points res = 0 for key in cnt: freq = cnt[key] # Increase the count of Parallelograms by # applying function on frequency of mid point res += freq*(freq - 1)/2 return res # Driver code to test above methods x = [0 0 2 4 1 3] y = [0 2 2 2 4 4] N = len(x); print(int(countOfParallelograms(x y N))) # The code is contributed by Gautam goel.  
C#
using System; using System.Collections.Generic; public class GFG {  // Returns count of Parallelograms possible  // from given points  public static int CountOfParallelograms(int[] x int[] y int N)  {  // Map to store frequency of mid points  Dictionary<string int> cnt = new Dictionary<string int>();  for (int i = 0; i < N; i++)  {  for (int j = i + 1; j < N; j++)  {  // division by 2 is ignored to get  // rid of doubles  int midX = x[i] + x[j];  int midY = y[i] + y[j];  // increase the frequency of mid point  string temp = string.Join(' ' midX.ToString() midY.ToString());  if (cnt.ContainsKey(temp))  {  cnt[temp]++;  }  else  {  cnt.Add(temp 1);  }  }  }  // Iterating through all mid points  int res = 0;  foreach (KeyValuePair<string int> it in cnt)  {  int freq = it.Value;  // Increase the count of Parallelograms by  // applying function on frequency of mid point  res += freq * (freq - 1) / 2;  }  return res;  }  public static void Main(string[] args)  {  int[] x = { 0 0 2 4 1 3 };  int[] y = { 0 2 2 2 4 4 };  int N = x.Length;  Console.WriteLine(CountOfParallelograms(x y N));  } } 
JavaScript
// JavaScript program to get number of Parallelograms we // can make by given points of the plane // Returns count of Parallelograms possible // from given points function countOfParallelograms(x y N) {  // Map to store frequency of mid points  // map int> cnt;  let cnt = new Map();  for (let i=0; i<N; i++)  {  for (let j=i+1; j<N; j++)  {  // division by 2 is ignored to get  // rid of doubles  let midX = x[i] + x[j];  let midY = y[i] + y[j];  // increase the frequency of mid point  let make_pair = [midX midY];  if(cnt.has(make_pair.join(''))){  cnt.set(make_pair.join('') cnt.get(make_pair.join('')) + 1);  }  else{  cnt.set(make_pair.join('') 1);  }  }  }  // Iterating through all mid points  let res = 0;  for (const [key value] of cnt)  {  let freq = value;  // Increase the count of Parallelograms by  // applying function on frequency of mid point  res = res + Math.floor(freq*(freq - 1)/2);  }  return res; } // Driver code to test above methods let x = [0 0 2 4 1 3]; let y = [0 2 2 2 4 4]; let N = x.length; console.log(countOfParallelograms(x y N)); // The code is contributed by Gautam goel (gautamgoel962) 

Изход
2

Времева сложност: O(n2logn), тъй като итерираме през два цикъла до n и използваме карта, която взема logn.
Помощно пространство: O(n)



Създаване на тест