logo

Намерете пермутация, която причинява най -лошия случай на сортиране на сливане

Като се има предвид набор от елементи, откриват коя пермутация на тези елементи би довела до най -лошия случай на сортиране.
Сортът с асимптотично сливане винаги отнема O (n log n) време, но случаите, които изискват повече сравнения, обикновено отнемат повече време на практика. По принцип трябва да намерим пермутация на входните елементи, които биха довели до максимален брой сравнения при сортиране, използвайки типичен алгоритъм за сортиране на сливане.

Пример:  



Consider the below set of elements   
{1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16}

Below permutation of the set causes 153
comparisons.
{1 9 5 13 3 11 7 15 2 10 6
14 4 12 8 16}

And an already sorted permutation causes
30 comparisons.

Сега как да получите най -лошия вход на случая за сортиране на сортиране за входен набор?

Позволява ни да се опитаме да изградим масива отдолу нагоре начин
Нека сортираният масив е {12345678}.

За да се генерира най -лошият случай на сортиране на сортиране, операцията за сливане, която е довела до горния сортиран масив, трябва да доведе до максимални сравнения. За да се направи това, лявата и дясната под-масив, участваща в операцията на сливане, трябва да съхранява алтернативни елементи от сортиран масив. т.е. левият под-масив трябва да бъде {1357}, а десният под-масив трябва да бъде {2468}. Сега всеки елемент на масива ще бъде сравнен на най-висок веднъж и това ще доведе до максимални сравнения. Прилагаме същата логика и за лявата и дясната под-масив. За масив {1357} най-лошият случай ще бъде, когато лявата и дясната му под-масив са съответно {15} и {37} и за масив {2468} най-лошият случай ще се случи за {24} и {68}.



Пълен алгоритъм -
GenerateWorstCase (ARR [])  

  1. Създайте два помощни масиви отляво и надясно и съхранявайте алтернативни елементи на масива в тях.
  2. Обадете се на GenerateWorstCase за ляв подреда: GenerateWorstCase (вляво)
  3. Обадете се на GenerateWorstCase за десен подреда: GenerateWorstCase (вдясно)
  4. Копирайте всички елементи на лявата и дясната подреда обратно в оригиналния масив.

По -долу е прилагането на идеята

C++
// C++ program to generate Worst Case // of Merge Sort #include    using namespace std; // Function to print an array void printArray(int A[] int size) {  for(int i = 0; i < size; i++)  {  cout << A[i] << ' ';  }  cout << endl; } // Function to join left and right subarray int join(int arr[] int left[] int right[]  int l int m int r) {  int i;  for(i = 0; i <= m - l; i++)  arr[i] = left[i];  for(int j = 0; j < r - m; j++)  {  arr[i + j] = right[j];  } } // Function to store alternate elements in // left and right subarray int split(int arr[] int left[] int right[]  int l int m int r) {  for(int i = 0; i <= m - l; i++)  left[i] = arr[i * 2];  for(int i = 0; i < r - m; i++)  right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case  // of Merge Sort int generateWorstCase(int arr[] int l  int r) {  if (l < r)  {  int m = l + (r - l) / 2;  // Create two auxiliary arrays  int left[m - l + 1];  int right[r - m];  // Store alternate array elements   // in left and right subarray  split(arr left right l m r);  // Recurse first and second halves  generateWorstCase(left l m);  generateWorstCase(right m + 1 r);  // Join left and right subarray  join(arr left right l m r);  } } // Driver code int main() {    // Sorted array  int arr[] = { 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 };    int n = sizeof(arr) / sizeof(arr[0]);  cout << 'Sorted array is n';  printArray(arr n);  // Generate Worst Case of Merge Sort  generateWorstCase(arr 0 n - 1);  cout << 'nInput array that will result '  << 'in worst case of merge sort is n';    printArray(arr n);  return 0; } // This code is contributed by Mayank Tyagi 
C
// C program to generate Worst Case of Merge Sort  #include   #include   // Function to print an array  void printArray(int A[] int size)  {   for (int i = 0; i < size; i++)   printf('%d ' A[i]);   printf('n');  }  // Function to join left and right subarray  int join(int arr[] int left[] int right[]   int l int m int r)  {   int i; // Used in second loop   for (i = 0; i <= m - l; i++)   arr[i] = left[i];   for (int j = 0; j < r - m; j++)   arr[i + j] = right[j];  }  // Function to store alternate elements in left  // and right subarray  int split(int arr[] int left[] int right[]   int l int m int r)  {   for (int i = 0; i <= m - l; i++)   left[i] = arr[i * 2];   for (int i = 0; i < r - m; i++)   right[i] = arr[i * 2 + 1];  }  // Function to generate Worst Case of Merge Sort  int generateWorstCase(int arr[] int l int r)  {   if (l < r)   {   int m = l + (r - l) / 2;   // create two auxiliary arrays   int left[m - l + 1];   int right[r - m];   // Store alternate array elements in left   // and right subarray   split(arr left right l m r);   // Recurse first and second halves   generateWorstCase(left l m);   generateWorstCase(right m + 1 r);   // join left and right subarray   join(arr left right l m r);   }  }  // Driver code  int main()  {   // Sorted array   int arr[] = { 1 2 3 4 5 6 7 8 9   10 11 12 13 14 15 16 };   int n = sizeof(arr) / sizeof(arr[0]);   printf('Sorted array is n');   printArray(arr n);   // generate Worst Case of Merge Sort   generateWorstCase(arr 0 n - 1);   printf('nInput array that will result in '  'worst case of merge sort is n');   printArray(arr n);   return 0;  }  
Java
// Java program to generate Worst Case of Merge Sort import java.util.Arrays; class GFG  {  // Function to join left and right subarray  static void join(int arr[] int left[] int right[]  int l int m int r)  {  int i;  for (i = 0; i <= m - l; i++)  arr[i] = left[i];    for (int j = 0; j < r - m; j++)  arr[i + j] = right[j];  }    // Function to store alternate elements in left  // and right subarray  static void split(int arr[] int left[] int right[]  int l int m int r)  {  for (int i = 0; i <= m - l; i++)  left[i] = arr[i * 2];    for (int i = 0; i < r - m; i++)  right[i] = arr[i * 2 + 1];  }    // Function to generate Worst Case of Merge Sort  static void generateWorstCase(int arr[] int l int r)  {  if (l < r)  {  int m = l + (r - l) / 2;    // create two auxiliary arrays  int[] left = new int[m - l + 1];  int[] right = new int[r - m];    // Store alternate array elements in left  // and right subarray  split(arr left right l m r);    // Recurse first and second halves  generateWorstCase(left l m);  generateWorstCase(right m + 1 r);    // join left and right subarray  join(arr left right l m r);  }  }    // driver program  public static void main (String[] args)   {  // sorted array  int arr[] = { 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 };  int n = arr.length;  System.out.println('Sorted array is');  System.out.println(Arrays.toString(arr));    // generate Worst Case of Merge Sort  generateWorstCase(arr 0 n - 1);    System.out.println('nInput array that will result in n'+  'worst case of merge sort is n');    System.out.println(Arrays.toString(arr));  } } // Contributed by Pramod Kumar 
Python
# Python program to generate Worst Case of Merge Sort # Function to join left and right subarray def join(arr left right l m r): i = 0; for i in range(m-l+1): arr[i] = left[i]; i+=1; for j in range(r-m): arr[i + j] = right[j]; # Function to store alternate elements in left # and right subarray def split(arr left right l m r): for i in range(m-l+1): left[i] = arr[i * 2]; for i in range(r-m): right[i] = arr[i * 2 + 1]; # Function to generate Worst Case of Merge Sort def generateWorstCase(arr l r): if (l < r): m = l + (r - l) // 2; # create two auxiliary arrays left = [0 for i in range(m - l + 1)]; right = [0 for i in range(r-m)]; # Store alternate array elements in left # and right subarray split(arr left right l m r); # Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); # join left and right subarray join(arr left right l m r); # driver program if __name__ == '__main__': # sorted array arr = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]; n = len(arr); print('Sorted array is'); print(arr); # generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); print('nInput array that will result in n' + 'worst case of merge sort is '); print(arr); # This code contributed by shikhasingrajput  
C#
// C# program to generate Worst Case of // Merge Sort using System; class GFG {    // Function to join left and right subarray  static void join(int []arr int []left   int []right int l int m int r)  {  int i;  for (i = 0; i <= m - l; i++)  arr[i] = left[i];  for (int j = 0; j < r - m; j++)  arr[i + j] = right[j];  }  // Function to store alternate elements in  // left and right subarray  static void split(int []arr int []left  int []right int l int m int r)  {  for (int i = 0; i <= m - l; i++)  left[i] = arr[i * 2];  for (int i = 0; i < r - m; i++)  right[i] = arr[i * 2 + 1];  }    // Function to generate Worst Case of   // Merge Sort  static void generateWorstCase(int []arr   int l int r)  {  if (l < r)  {  int m = l + (r - l) / 2;  // create two auxiliary arrays  int[] left = new int[m - l + 1];  int[] right = new int[r - m];  // Store alternate array elements  // in left and right subarray  split(arr left right l m r);  // Recurse first and second halves  generateWorstCase(left l m);  generateWorstCase(right m + 1 r);  // join left and right subarray  join(arr left right l m r);  }  }    // driver program  public static void Main ()   {    // sorted array  int []arr = { 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 };    int n = arr.Length;  Console.Write('Sorted array isn');    for(int i = 0; i < n; i++)  Console.Write(arr[i] + ' ');    // generate Worst Case of Merge Sort  generateWorstCase(arr 0 n - 1);  Console.Write('nInput array that will '  + 'result in n worst case of'  + ' merge sort is n');    for(int i = 0; i < n; i++)  Console.Write(arr[i] + ' ');  } } // This code is contributed by Smitha  
JavaScript
<script>  // javascript program to generate Worst Case  // of Merge Sort  // Function to print an array  function printArray(Asize)  {  for(let i = 0; i < size; i++)  {  document.write(A[i] + ' ');  }  }  // Function to join left and right subarray  function join(arrleftrightlmr)  {  let i;  for(i = 0; i <= m - l; i++)  arr[i] = left[i];  for(let j = 0; j < r - m; j++)  {  arr[i + j] = right[j];  }  }  // Function to store alternate elements in  // left and right subarray  function split(arrleftrightlmr)  {  for(let i = 0; i <= m - l; i++)  left[i] = arr[i * 2];  for(let i = 0; i < r - m; i++)  right[i] = arr[i * 2 + 1];  }  // Function to generate Worst Case  // of Merge Sort  function generateWorstCase(arrlr)  {  if (l < r)  {  let m = l + parseInt((r - l) / 2 10);  // Create two auxiliary arrays  let left = new Array(m - l + 1);  let right = new Array(r - m);  left.fill(0);  right.fill(0);  // Store alternate array elements  // in left and right subarray  split(arr left right l m r);  // Recurse first and second halves  generateWorstCase(left l m);  generateWorstCase(right m + 1 r);  // Join left and right subarray  join(arr left right l m r);  }  }    let arr = [1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 ];   let n = arr.length;  document.write('Sorted array is' + '
'
); printArray(arr n); // Generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); document.write('
'
+ 'Input array that will result ' + 'in worst case of merge sort is' + '
'
); printArray(arr n); // This code is contributed by vaibhavrabadiya117. </script>

Резултат: 



Sorted array is   
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input array that will result in worst
case of merge sort is
1 9 5 13 3 11 7 15 2 10 6 14 4 12 8 16

Сложност на времето: o (n logn)
Спомагателно пространство: o (n)
Референции - Стек преливане