logo

Най-дългият възможен маршрут в матрица с препятствия

Опитайте в GfG Practice Най-дългият възможен маршрут в матрица с препятствия' title=

Дадена е 2D двоична матрица заедно с [][] където някои клетки са препятствия (обозначени с0), а останалите са свободни клетки (означени с1) вашата задача е да намерите дължината на най-дългия възможен маршрут от изходна клетка (xs ys) към целева клетка (xd yd) .

  • Можете да се придвижвате само до съседни клетки (нагоре, надолу, наляво, надясно).
  • Диагоналните движения не са разрешени.
  • Клетка, посетена веднъж в дадена пътека, не може да бъде посетена отново в същата тази пътека.
  • Ако е невъзможно да се стигне до местоназначението се върнете-1.

Примери:
вход: xs = 0 ys = 0 xd = 1 yd = 7
с [][] = [ [1 1 1 1 1 1 1 1 1 1]
[1 1 0 1 1 0 1 1 0 1]
[1 1 1 1 1 1 1 1 1 1] ]
Изход: 24
Обяснение:



8 към 1 мултиплексор

вход: xs = 0 ys = 3 xd = 2 yd = 2
с[][] =[ [1 0 0 1 0]
[0 0 0 1 0]
[0 1 1 0 0] ]
Изход: -1
Обяснение:
Виждаме, че е невъзможно
достигнете клетката (22) от (03).

Съдържание



[Подход] Използване на обратно проследяване с посетена матрица

Идеята е да се използва Обратно проследяване . Започваме от изходната клетка на матрицата, придвижваме се напред във всичките четири разрешени посоки и рекурсивно проверяваме дали водят до решението или не. Ако местоназначението бъде намерено, актуализираме стойността на най-дългия път, в противен случай, ако нито едно от горните решения не работи, връщаме false от нашата функция.

CPP
#include    #include  #include  #include    using namespace std; // Function to find the longest path using backtracking int dfs(vector<vector<int>> &mat   vector<vector<bool>> &visited int i   int j int x int y) {  int m = mat.size();  int n = mat[0].size();    // If destination is reached  if (i == x && j == y) {  return 0;  }    // If cell is invalid blocked or already visited  if (i < 0 || i >= m || j < 0 || j >= n ||   mat[i][j] == 0 || visited[i][j]) {  return -1;   }    // Mark current cell as visited  visited[i][j] = true;    int maxPath = -1;    // Four possible moves: up down left right  int row[] = {-1 1 0 0};  int col[] = {0 0 -1 1};    for (int k = 0; k < 4; k++) {  int ni = i + row[k];  int nj = j + col[k];    int pathLength = dfs(mat visited   ni nj x y);    // If a valid path is found from this direction  if (pathLength != -1) {  maxPath = max(maxPath 1 + pathLength);  }  }    // Backtrack - unmark current cell  visited[i][j] = false;    return maxPath; } int findLongestPath(vector<vector<int>> &mat   int xs int ys int xd int yd) {  int m = mat.size();  int n = mat[0].size();    // Check if source or destination is blocked  if (mat[xs][ys] == 0 || mat[xd][yd] == 0) {  return -1;  }    vector<vector<bool>> visited(m vector<bool>(n false));  return dfs(mat visited xs ys xd yd); } int main() {  vector<vector<int>> mat = {  {1 1 1 1 1 1 1 1 1 1}  {1 1 0 1 1 0 1 1 0 1}  {1 1 1 1 1 1 1 1 1 1}  };    int xs = 0 ys = 0;   int xd = 1 yd = 7;     int result = findLongestPath(mat xs ys xd yd);    if (result != -1)  cout << result << endl;  else  cout << -1 << endl;    return 0; } 
Java
import java.util.Arrays; public class GFG {    // Function to find the longest path using backtracking  public static int dfs(int[][] mat boolean[][] visited  int i int j int x int y) {  int m = mat.length;  int n = mat[0].length;    // If destination is reached  if (i == x && j == y) {  return 0;  }    // If cell is invalid blocked or already visited  if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0 || visited[i][j]) {  return -1; // Invalid path  }    // Mark current cell as visited  visited[i][j] = true;    int maxPath = -1;    // Four possible moves: up down left right  int[] row = {-1 1 0 0};  int[] col = {0 0 -1 1};    for (int k = 0; k < 4; k++) {  int ni = i + row[k];  int nj = j + col[k];    int pathLength = dfs(mat visited ni nj x y);    // If a valid path is found from this direction  if (pathLength != -1) {  maxPath = Math.max(maxPath 1 + pathLength);  }  }    // Backtrack - unmark current cell  visited[i][j] = false;    return maxPath;  }    public static int findLongestPath(int[][] mat int xs int ys int xd int yd) {  int m = mat.length;  int n = mat[0].length;    // Check if source or destination is blocked  if (mat[xs][ys] == 0 || mat[xd][yd] == 0) {  return -1;  }    boolean[][] visited = new boolean[m][n];  return dfs(mat visited xs ys xd yd);  }    public static void main(String[] args) {  int[][] mat = {  {1 1 1 1 1 1 1 1 1 1}  {1 1 0 1 1 0 1 1 0 1}  {1 1 1 1 1 1 1 1 1 1}  };    int xs = 0 ys = 0;  int xd = 1 yd = 7;    int result = findLongestPath(mat xs ys xd yd);    if (result != -1)  System.out.println(result);  else  System.out.println(-1);  } } 
Python
# Function to find the longest path using backtracking def dfs(mat visited i j x y): m = len(mat) n = len(mat[0]) # If destination is reached if i == x and j == y: return 0 # If cell is invalid blocked or already visited if i < 0 or i >= m or j < 0 or j >= n or mat[i][j] == 0 or visited[i][j]: return -1 # Invalid path # Mark current cell as visited visited[i][j] = True maxPath = -1 # Four possible moves: up down left right row = [-1 1 0 0] col = [0 0 -1 1] for k in range(4): ni = i + row[k] nj = j + col[k] pathLength = dfs(mat visited ni nj x y) # If a valid path is found from this direction if pathLength != -1: maxPath = max(maxPath 1 + pathLength) # Backtrack - unmark current cell visited[i][j] = False return maxPath def findLongestPath(mat xs ys xd yd): m = len(mat) n = len(mat[0]) # Check if source or destination is blocked if mat[xs][ys] == 0 or mat[xd][yd] == 0: return -1 visited = [[False for _ in range(n)] for _ in range(m)] return dfs(mat visited xs ys xd yd) def main(): mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ] xs ys = 0 0 xd yd = 1 7 result = findLongestPath(mat xs ys xd yd) if result != -1: print(result) else: print(-1) if __name__ == '__main__': main() 
C#
using System; class GFG {  // Function to find the longest path using backtracking  static int dfs(int[] mat bool[] visited   int i int j int x int y)  {  int m = mat.GetLength(0);  int n = mat.GetLength(1);    // If destination is reached  if (i == x && j == y)  {  return 0;  }    // If cell is invalid blocked or already visited  if (i < 0 || i >= m || j < 0 || j >= n || mat[i j] == 0 || visited[i j])  {  return -1; // Invalid path  }    // Mark current cell as visited  visited[i j] = true;    int maxPath = -1;    // Four possible moves: up down left right  int[] row = {-1 1 0 0};  int[] col = {0 0 -1 1};    for (int k = 0; k < 4; k++)  {  int ni = i + row[k];  int nj = j + col[k];    int pathLength = dfs(mat visited ni nj x y);    // If a valid path is found from this direction  if (pathLength != -1)  {  maxPath = Math.Max(maxPath 1 + pathLength);  }  }    // Backtrack - unmark current cell  visited[i j] = false;    return maxPath;  }    static int FindLongestPath(int[] mat int xs int ys int xd int yd)  {  int m = mat.GetLength(0);  int n = mat.GetLength(1);    // Check if source or destination is blocked  if (mat[xs ys] == 0 || mat[xd yd] == 0)  {  return -1;  }    bool[] visited = new bool[m n];  return dfs(mat visited xs ys xd yd);  }    static void Main()  {  int[] mat = {  {1 1 1 1 1 1 1 1 1 1}  {1 1 0 1 1 0 1 1 0 1}  {1 1 1 1 1 1 1 1 1 1}  };    int xs = 0 ys = 0;   int xd = 1 yd = 7;     int result = FindLongestPath(mat xs ys xd yd);    if (result != -1)  Console.WriteLine(result);  else  Console.WriteLine(-1);  } } 
JavaScript
// Function to find the longest path using backtracking function dfs(mat visited i j x y) {  const m = mat.length;  const n = mat[0].length;    // If destination is reached  if (i === x && j === y) {  return 0;  }    // If cell is invalid blocked or already visited  if (i < 0 || i >= m || j < 0 || j >= n ||   mat[i][j] === 0 || visited[i][j]) {  return -1;   }    // Mark current cell as visited  visited[i][j] = true;    let maxPath = -1;    // Four possible moves: up down left right  const row = [-1 1 0 0];  const col = [0 0 -1 1];    for (let k = 0; k < 4; k++) {  const ni = i + row[k];  const nj = j + col[k];    const pathLength = dfs(mat visited   ni nj x y);    // If a valid path is found from this direction  if (pathLength !== -1) {  maxPath = Math.max(maxPath 1 + pathLength);  }  }    // Backtrack - unmark current cell  visited[i][j] = false;    return maxPath; } function findLongestPath(mat xs ys xd yd) {  const m = mat.length;  const n = mat[0].length;    // Check if source or destination is blocked  if (mat[xs][ys] === 0 || mat[xd][yd] === 0) {  return -1;  }    const visited = Array(m).fill().map(() => Array(n).fill(false));  return dfs(mat visited xs ys xd yd); }  const mat = [  [1 1 1 1 1 1 1 1 1 1]  [1 1 0 1 1 0 1 1 0 1]  [1 1 1 1 1 1 1 1 1 1]  ];    const xs = 0 ys = 0;   const xd = 1 yd = 7;     const result = findLongestPath(mat xs ys xd yd);    if (result !== -1)  console.log(result);  else  console.log(-1); 

Изход
24 

Времева сложност: O(4^(m*n)) За всяка клетка в матрицата m x n алгоритъмът изследва до четири възможни посоки (нагоре, надолу, наляво, надясно), водещи до експоненциален брой пътища. В най-лошия случай той изследва всички възможни пътища, което води до времева сложност от 4^(m*n).
Помощно пространство: O(m*n) Алгоритъмът използва m x n посетена матрица за проследяване на посетени клетки и стек за рекурсия, който може да нарасне до дълбочина m * n в най-лошия случай (напр. при изследване на път, покриващ всички клетки). Така спомагателното пространство е O(m*n).

[Оптимизиран подход] Без използване на допълнително пространство

Вместо да поддържаме отделна посетена матрица, можем повторно използване на входната матрица за маркиране на посетените клетки по време на обхождането. Това спестява допълнително място и все още гарантира, че няма да преразгледаме същата клетка в пътя.



По-долу е подходът стъпка по стъпка:

  1. Започнете от изходната клетка(xs ys).
  2. На всяка стъпка изследвайте всичките четири възможни посоки (надясно надолу наляво нагоре).
  3. За всеки валиден ход:
    • Проверете границите и се уверете, че клетката има стойност1(свободна клетка).
    • Маркирайте клетката като посетена, като временно я зададете на0.
    • Върнете се в следващата клетка и увеличете дължината на пътя.
  4. Ако целевата клетка(xd yd)е достигната сравнете текущата дължина на пътя с максималната досега и актуализирайте отговора.
  5. Обратно: възстановете първоначалната стойност на клетката (1), преди да се върнете, за да позволите на други пътища да го изследват.
  6. Продължете да изследвате, докато не посетите всички възможни пътеки.
  7. Връща максималната дължина на пътя. Ако дестинацията е недостижима, върнете се-1
C++
#include    #include  #include  #include    using namespace std; // Function to find the longest path using backtracking without extra space int dfs(vector<vector<int>> &mat int i int j int x int y) {  int m = mat.size();  int n = mat[0].size();    // If destination is reached  if (i == x && j == y) {  return 0;  }    // If cell is invalid or blocked (0 means blocked or visited)  if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0) {  return -1;   }    // Mark current cell as visited by temporarily setting it to 0  mat[i][j] = 0;    int maxPath = -1;    // Four possible moves: up down left right  int row[] = {-1 1 0 0};  int col[] = {0 0 -1 1};    for (int k = 0; k < 4; k++) {  int ni = i + row[k];  int nj = j + col[k];    int pathLength = dfs(mat ni nj x y);    // If a valid path is found from this direction  if (pathLength != -1) {  maxPath = max(maxPath 1 + pathLength);  }  }    // Backtrack - restore the cell's original value (1)  mat[i][j] = 1;    return maxPath; } int findLongestPath(vector<vector<int>> &mat int xs int ys int xd int yd) {  int m = mat.size();  int n = mat[0].size();    // Check if source or destination is blocked  if (mat[xs][ys] == 0 || mat[xd][yd] == 0) {  return -1;  }    return dfs(mat xs ys xd yd); } int main() {  vector<vector<int>> mat = {  {1 1 1 1 1 1 1 1 1 1}  {1 1 0 1 1 0 1 1 0 1}  {1 1 1 1 1 1 1 1 1 1}  };    int xs = 0 ys = 0;   int xd = 1 yd = 7;     int result = findLongestPath(mat xs ys xd yd);    if (result != -1)  cout << result << endl;  else  cout << -1 << endl;    return 0; } 
Java
public class GFG {    // Function to find the longest path using backtracking without extra space  public static int dfs(int[][] mat int i int j int x int y) {  int m = mat.length;  int n = mat[0].length;    // If destination is reached  if (i == x && j == y) {  return 0;  }    // If cell is invalid or blocked (0 means blocked or visited)  if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0) {  return -1;   }    // Mark current cell as visited by temporarily setting it to 0  mat[i][j] = 0;    int maxPath = -1;    // Four possible moves: up down left right  int[] row = {-1 1 0 0};  int[] col = {0 0 -1 1};    for (int k = 0; k < 4; k++) {  int ni = i + row[k];  int nj = j + col[k];    int pathLength = dfs(mat ni nj x y);    // If a valid path is found from this direction  if (pathLength != -1) {  maxPath = Math.max(maxPath 1 + pathLength);  }  }    // Backtrack - restore the cell's original value (1)  mat[i][j] = 1;    return maxPath;  }    public static int findLongestPath(int[][] mat int xs int ys int xd int yd) {  int m = mat.length;  int n = mat[0].length;    // Check if source or destination is blocked  if (mat[xs][ys] == 0 || mat[xd][yd] == 0) {  return -1;  }    return dfs(mat xs ys xd yd);  }    public static void main(String[] args) {  int[][] mat = {  {1 1 1 1 1 1 1 1 1 1}  {1 1 0 1 1 0 1 1 0 1}  {1 1 1 1 1 1 1 1 1 1}  };    int xs = 0 ys = 0;   int xd = 1 yd = 7;     int result = findLongestPath(mat xs ys xd yd);    if (result != -1)  System.out.println(result);  else  System.out.println(-1);  } } 
Python
# Function to find the longest path using backtracking without extra space def dfs(mat i j x y): m = len(mat) n = len(mat[0]) # If destination is reached if i == x and j == y: return 0 # If cell is invalid or blocked (0 means blocked or visited) if i < 0 or i >= m or j < 0 or j >= n or mat[i][j] == 0: return -1 # Mark current cell as visited by temporarily setting it to 0 mat[i][j] = 0 maxPath = -1 # Four possible moves: up down left right row = [-1 1 0 0] col = [0 0 -1 1] for k in range(4): ni = i + row[k] nj = j + col[k] pathLength = dfs(mat ni nj x y) # If a valid path is found from this direction if pathLength != -1: maxPath = max(maxPath 1 + pathLength) # Backtrack - restore the cell's original value (1) mat[i][j] = 1 return maxPath def findLongestPath(mat xs ys xd yd): m = len(mat) n = len(mat[0]) # Check if source or destination is blocked if mat[xs][ys] == 0 or mat[xd][yd] == 0: return -1 return dfs(mat xs ys xd yd) def main(): mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ] xs ys = 0 0 xd yd = 1 7 result = findLongestPath(mat xs ys xd yd) if result != -1: print(result) else: print(-1) if __name__ == '__main__': main() 
C#
using System; class GFG {  // Function to find the longest path using backtracking without extra space  static int dfs(int[] mat int i int j int x int y)  {  int m = mat.GetLength(0);  int n = mat.GetLength(1);    // If destination is reached  if (i == x && j == y)  {  return 0;  }    // If cell is invalid or blocked (0 means blocked or visited)  if (i < 0 || i >= m || j < 0 || j >= n || mat[i j] == 0)  {  return -1;   }    // Mark current cell as visited by temporarily setting it to 0  mat[i j] = 0;    int maxPath = -1;    // Four possible moves: up down left right  int[] row = {-1 1 0 0};  int[] col = {0 0 -1 1};    for (int k = 0; k < 4; k++)  {  int ni = i + row[k];  int nj = j + col[k];    int pathLength = dfs(mat ni nj x y);    // If a valid path is found from this direction  if (pathLength != -1)  {  maxPath = Math.Max(maxPath 1 + pathLength);  }  }    // Backtrack - restore the cell's original value (1)  mat[i j] = 1;    return maxPath;  }    static int FindLongestPath(int[] mat int xs int ys int xd int yd)  {  // Check if source or destination is blocked  if (mat[xs ys] == 0 || mat[xd yd] == 0)  {  return -1;  }    return dfs(mat xs ys xd yd);  }    static void Main()  {  int[] mat = {  {1 1 1 1 1 1 1 1 1 1}  {1 1 0 1 1 0 1 1 0 1}  {1 1 1 1 1 1 1 1 1 1}  };    int xs = 0 ys = 0;   int xd = 1 yd = 7;     int result = FindLongestPath(mat xs ys xd yd);    if (result != -1)  Console.WriteLine(result);  else  Console.WriteLine(-1);  } } 
JavaScript
// Function to find the longest path using backtracking without extra space function dfs(mat i j x y) {  const m = mat.length;  const n = mat[0].length;    // If destination is reached  if (i === x && j === y) {  return 0;  }    // If cell is invalid or blocked (0 means blocked or visited)  if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] === 0) {  return -1;   }    // Mark current cell as visited by temporarily setting it to 0  mat[i][j] = 0;    let maxPath = -1;    // Four possible moves: up down left right  const row = [-1 1 0 0];  const col = [0 0 -1 1];    for (let k = 0; k < 4; k++) {  const ni = i + row[k];  const nj = j + col[k];    const pathLength = dfs(mat ni nj x y);    // If a valid path is found from this direction  if (pathLength !== -1) {  maxPath = Math.max(maxPath 1 + pathLength);  }  }    // Backtrack - restore the cell's original value (1)  mat[i][j] = 1;    return maxPath; } function findLongestPath(mat xs ys xd yd) {  const m = mat.length;  const n = mat[0].length;    // Check if source or destination is blocked  if (mat[xs][ys] === 0 || mat[xd][yd] === 0) {  return -1;  }    return dfs(mat xs ys xd yd); }  const mat = [  [1 1 1 1 1 1 1 1 1 1]  [1 1 0 1 1 0 1 1 0 1]  [1 1 1 1 1 1 1 1 1 1]  ];    const xs = 0 ys = 0;   const xd = 1 yd = 7;     const result = findLongestPath(mat xs ys xd yd);    if (result !== -1)  console.log(result);  else  console.log(-1); 

Изход
24 

Времева сложност: O(4^(m*n)) Алгоритъмът все още изследва до четири посоки на клетка в матрицата m x n, което води до експоненциален брой пътища. Модификацията на място не засяга броя на изследваните пътища, така че времевата сложност остава 4^(m*n).
Помощно пространство: O(m*n) Докато посетената матрица се елиминира чрез модифициране на входната матрица на място, стекът за рекурсия все още изисква O(m*n) пространство, тъй като максималната дълбочина на рекурсия може да бъде m * n в най-лошия случай (напр. път, посещаващ всички клетки в мрежа с предимно 1s).

java стойност на низ