logo

Път с минимални разходи с разрешени движения наляво, надясно, отдолу и нагоре

Опитайте в GfG Practice ' title=

Дадена е 2D решетка с размер n*n където всяка клетка представлява цената за преминаване през тази клетка, задачата е да се намери минимални разходи да се премести от горе вляво клетка към долу вдясно клетка. От дадена клетка можем да влезем 4 направления : наляво надясно нагоре надолу.

Забележка: Приема се, че във входната матрица не съществуват цикли с отрицателни разходи.

приоритет на java оператора

Пример:



вход: мрежа = {{9 4 9 9}
{6 7 6 4}
{8 3 3 7}
{7 4 9 10}}
Резултат: 43
Обяснение: Минималният разходен път е 9 + 4 + 7 + 3 + 3 + 7 + 10.

Подход:

Идеята е да се използва Алгоритъмът на Дейкстра за да намерите пътя с минимални разходи през мрежата. Този подход третира решетката като графика, където всяка клетка е възел и алгоритъмът динамично изследва най-рентабилния път до долната дясна клетка, като винаги първо разширява пътищата с най-ниска цена.

Подход стъпка по стъпка:

случаен без генератор в java
  1. Използвайте min-heap, за да обработвате винаги първо пътя с най-ниска цена и да натиснете горната лява клетка в него.
  2. Инициализирайте матрица на разходите с максимални стойности, задавайки стойността на началната клетка на нейната стойност в мрежата.
  3. За всяка клетка проверете всички 4 съседни клетки
    1. Ако бъде намерен път с по-ниска цена, актуализирайте цената на клетката и я избутайте в купчина.
  4. Върнете минималната цена, за да стигнете до долната дясна клетка.

По-долу е изпълнението на горния подход:

C++
// C++ program to find minimum Cost Path with  // Left Right Bottom and Up moves allowed #include    using namespace std; // Function to check if cell is valid. bool isValidCell(int i int j int n) {  return i>=0 && i<n && j>=0 && j<n; } int minimumCostPath(vector<vector<int>> &grid) {  int n = grid.size();    // Min heap to implement dijkstra  priority_queue<vector<int>   vector<vector<int>> greater<vector<int>>> pq;    // 2d grid to store minimum cost  // to reach every cell.  vector<vector<int>> cost(n vector<int>(n INT_MAX));  cost[0][0] = grid[0][0];    // Direction vector to move in 4 directions  vector<vector<int>> dir = {{-10} {10} {0-1} {01}};    pq.push({grid[0][0] 0 0});    while (!pq.empty()) {  vector<int> top = pq.top();  pq.pop();    int c = top[0] i = top[1] j = top[2];    // Check for all 4 neighbouring cells.  for (auto d: dir) {  int x = i + d[0];  int y = j + d[1];    // If cell is valid and cost to reach this cell   // from current cell is less  if (isValidCell(x y n) &&   cost[i][j]+grid[x][y]<cost[x][y]) {    // Update cost to reach this cell.  cost[x][y] = cost[i][j]+grid[x][y];    // Push the cell into heap.  pq.push({cost[x][y] x y});  }  }  }    // Return minimum cost to   // reach bottom right cell.  return cost[n-1][n-1]; } int main() {  vector<vector<int>> grid =   {{9499}{6764}{8337}{74910}};    cout << minimumCostPath(grid) << endl;    return 0; } 
Java
// Java program to find minimum Cost Path with  // Left Right Bottom and Up moves allowed import java.util.PriorityQueue; import java.util.Arrays; class GfG {  // Function to check if cell is valid.  static boolean isValidCell(int i int j int n) {  return i >= 0 && i < n && j >= 0 && j < n;  }  static int minimumCostPath(int[][] grid) {  int n = grid.length;    // Min heap to implement Dijkstra  PriorityQueue<int[]> pq =   new PriorityQueue<>((a b) -> Integer.compare(a[0] b[0]));    // 2D grid to store minimum cost  // to reach every cell.  int[][] cost = new int[n][n];  for (int[] row : cost) {  Arrays.fill(row Integer.MAX_VALUE);  }  cost[0][0] = grid[0][0];    // Direction vector to move in 4 directions  int[][] dir = {{-1 0} {1 0} {0 -1} {0 1}};    pq.offer(new int[]{grid[0][0] 0 0});    while (!pq.isEmpty()) {  int[] top = pq.poll();    int c = top[0] i = top[1] j = top[2];    // Check for all 4 neighbouring cells.  for (int[] d : dir) {  int x = i + d[0];  int y = j + d[1];    // If cell is valid and cost to reach this cell   // from current cell is less  if (isValidCell(x y n) && cost[i][j] + grid[x][y] < cost[x][y]) {    // Update cost to reach this cell.  cost[x][y] = cost[i][j] + grid[x][y];    // Push the cell into heap.  pq.offer(new int[]{cost[x][y] x y});  }  }  }    // Return minimum cost to   // reach bottom right cell.  return cost[n - 1][n - 1];  }  public static void main(String[] args) {  int[][] grid = {  {9 4 9 9}  {6 7 6 4}  {8 3 3 7}  {7 4 9 10}  };    System.out.println(minimumCostPath(grid));  } } 
Python
# Python program to find minimum Cost Path with  # Left Right Bottom and Up moves allowed import heapq # Function to check if cell is valid. def isValidCell(i j n): return i >= 0 and i < n and j >= 0 and j < n def minimumCostPath(grid): n = len(grid) # Min heap to implement Dijkstra pq = [] # 2D grid to store minimum cost # to reach every cell. cost = [[float('inf')] * n for _ in range(n)] cost[0][0] = grid[0][0] # Direction vector to move in 4 directions dir = [[-1 0] [1 0] [0 -1] [0 1]] heapq.heappush(pq [grid[0][0] 0 0]) while pq: c i j = heapq.heappop(pq) # Check for all 4 neighbouring cells. for d in dir: x y = i + d[0] j + d[1] # If cell is valid and cost to reach this cell  # from current cell is less if isValidCell(x y n) and cost[i][j] + grid[x][y] < cost[x][y]: # Update cost to reach this cell. cost[x][y] = cost[i][j] + grid[x][y] # Push the cell into heap. heapq.heappush(pq [cost[x][y] x y]) # Return minimum cost to  # reach bottom right cell. return cost[n - 1][n - 1] if __name__ == '__main__': grid = [ [9 4 9 9] [6 7 6 4] [8 3 3 7] [7 4 9 10] ] print(minimumCostPath(grid)) 
C#
// C# program to find minimum Cost Path with  // Left Right Bottom and Up moves allowed using System; using System.Collections.Generic; class GfG {  // Function to check if cell is valid.  static bool isValidCell(int i int j int n) {  return i >= 0 && i < n && j >= 0 && j < n;  }  static int minimumCostPath(int[][] grid) {  int n = grid.Length;    // Min heap to implement Dijkstra  var pq = new SortedSet<(int cost int x int y)>();    // 2D grid to store minimum cost  // to reach every cell.  int[][] cost = new int[n][];  for (int i = 0; i < n; i++) {  cost[i] = new int[n];  Array.Fill(cost[i] int.MaxValue);  }  cost[0][0] = grid[0][0];    // Direction vector to move in 4 directions  int[][] dir = { new int[] {-1 0} new int[] {1 0}   new int[] {0 -1} new int[] {0 1} };    pq.Add((grid[0][0] 0 0));    while (pq.Count > 0) {  var top = pq.Min;  pq.Remove(top);    int i = top.x j = top.y;    // Check for all 4 neighbouring cells.  foreach (var d in dir) {  int x = i + d[0];  int y = j + d[1];    // If cell is valid and cost to reach this cell   // from current cell is less  if (isValidCell(x y n) &&   cost[i][j] + grid[x][y] < cost[x][y]) {    // Update cost to reach this cell.  cost[x][y] = cost[i][j] + grid[x][y];    // Push the cell into heap.  pq.Add((cost[x][y] x y));  }  }  }    // Return minimum cost to   // reach bottom right cell.  return cost[n - 1][n - 1];  }  static void Main(string[] args) {  int[][] grid = new int[][] {  new int[] {9 4 9 9}  new int[] {6 7 6 4}  new int[] {8 3 3 7}  new int[] {7 4 9 10}  };    Console.WriteLine(minimumCostPath(grid));  } } 
JavaScript
// JavaScript program to find minimum Cost Path with // Left Right Bottom and Up moves allowed function comparator(a b) {  if (a[0] > b[0]) return -1;  if (a[0] < b[0]) return 1;  return 0; } class PriorityQueue {  constructor(compare) {  this.heap = [];  this.compare = compare;  }  enqueue(value) {  this.heap.push(value);  this.bubbleUp();  }  bubbleUp() {  let index = this.heap.length - 1;  while (index > 0) {  let element = this.heap[index]  parentIndex = Math.floor((index - 1) / 2)  parent = this.heap[parentIndex];  if (this.compare(element parent) < 0) break;  this.heap[index] = parent;  this.heap[parentIndex] = element;  index = parentIndex;  }  }  dequeue() {  let max = this.heap[0];  let end = this.heap.pop();  if (this.heap.length > 0) {  this.heap[0] = end;  this.sinkDown(0);  }  return max;  }  sinkDown(index) {  let left = 2 * index + 1  right = 2 * index + 2  largest = index;  if (  left < this.heap.length &&  this.compare(this.heap[left] this.heap[largest]) > 0  ) {  largest = left;  }  if (  right < this.heap.length &&  this.compare(this.heap[right] this.heap[largest]) > 0  ) {  largest = right;  }  if (largest !== index) {  [this.heap[largest] this.heap[index]] = [  this.heap[index]  this.heap[largest]  ];  this.sinkDown(largest);  }  }  isEmpty() {  return this.heap.length === 0;  } } // Function to check if cell is valid. function isValidCell(i j n) {  return i >= 0 && i < n && j >= 0 && j < n; } function minimumCostPath(grid) {  let n = grid.length;  // Min heap to implement Dijkstra  const pq = new PriorityQueue(comparator)  // 2D grid to store minimum cost  // to reach every cell.  let cost = Array.from({ length: n } () => Array(n).fill(Infinity));  cost[0][0] = grid[0][0];  // Direction vector to move in 4 directions  let dir = [[-1 0] [1 0] [0 -1] [0 1]];  pq.enqueue([grid[0][0] 0 0]);  while (!pq.isEmpty()) {  let [c i j] = pq.dequeue();  // Check for all 4 neighbouring cells.  for (let d of dir) {  let x = i + d[0];  let y = j + d[1];  // If cell is valid and cost to reach this cell  // from current cell is less  if (isValidCell(x y n) && cost[i][j] + grid[x][y] < cost[x][y]) {  // Update cost to reach this cell.  cost[x][y] = cost[i][j] + grid[x][y];  // Push the cell into heap.  pq.enqueue([cost[x][y] x y]);  }  }  }  // Return minimum cost to  // reach bottom right cell.  return cost[n - 1][n - 1]; } let grid = [  [9 4 9 9]  [6 7 6 4]  [8 3 3 7]  [7 4 9 10]  ]; console.log(minimumCostPath(grid)); 

Изход
43 

Времева сложност: O(n^2 log(n^2))
Помощно пространство: O(n^2 log(n^2))

Защо не може да се използва динамично програмиране?

Динамичното програмиране се проваля тук, защото позволяването на движение във всичките четири посоки създава цикли, при които клетките могат да бъдат преразгледани, нарушавайки предположението за оптимална подструктура. Това означава, че цената за достигане на клетка от дадена клетка не е фиксирана, а зависи от целия път.

Свързани статии:

Път на минимални разходи

Създаване на тест