Дадено е число n, намерете всички двоични последователности с дължина 2n, така че сумата от първите n бита да е същата като сумата от последните n бита.
Примери:
strsep c
Input: N = 2 Output: 0101 1111 1001 0110 0000 1010 Input: N = 3 Output: 011011 001001 011101 010001 101011 111111 110011 101101 100001 110101 001010 011110 010010 001100 000000 010100 101110 100010 110110 100100
Идеята е да се коригират първия и последния бит и след това да се повтори за останалите 2*(n-1) бита. Има четири възможности, когато коригираме първия и последния бит -
- Първият и последният бит са 1 оставащи n - 1 бита от двете страни също трябва да имат една и съща сума.
- Първият и последният бит са 0, останалите n - 1 бита от двете страни също трябва да имат една и съща сума.
- Първият бит е 1, а последният бит е 0. Сумата от оставащите n - 1 бита от лявата страна трябва да бъде с 1 по-малка от сумата от n-1 бита от дясната страна.
- Първият бит е 0, а последният бит е 1 сума от оставащите n - 1 бита от лявата страна трябва да са с 1 повече от сумата n-1 бита от дясната страна.
По-долу е изпълнението на горната идея –
// C++ program to print even length binary sequences // whose sum of first and second half bits is same #include using namespace std; // Function to print even length binary sequences // whose sum of first and second half bits is same // diff --> difference between sums of first n bits // and last n bits // out --> output array // start --> starting index // end --> ending index void findAllSequences(int diff char* out int start int end) { // We can't cover difference of more than n with 2n bits if (abs(diff) > (end - start + 1) / 2) return; // if all bits are filled if (start > end) { // if sum of first n bits and last n bits are same if (diff == 0) cout << out << ' '; return; } // fill first bit as 0 and last bit as 1 out[start] = '0' out[end] = '1'; findAllSequences(diff + 1 out start + 1 end - 1); // fill first and last bits as 1 out[start] = out[end] = '1'; findAllSequences(diff out start + 1 end - 1); // fill first and last bits as 0 out[start] = out[end] = '0'; findAllSequences(diff out start + 1 end - 1); // fill first bit as 1 and last bit as 0 out[start] = '1' out[end] = '0'; findAllSequences(diff - 1 out start + 1 end - 1); } // Driver program int main() { // input number int n = 2; // allocate string containing 2*n characters char out[2 * n + 1]; // null terminate output array out[2 * n] = ' '; findAllSequences(0 out 0 2*n - 1); return 0; }
Java // Java program to print even length binary // sequences whose sum of first and second // half bits is same import java.io.*; import java.util.*; class GFG { // Function to print even length binary sequences // whose sum of first and second half bits is same // diff --> difference between sums of first n bits // and last n bits // out --> output array // start --> starting index // end --> ending index static void findAllSequences(int diff char out[] int start int end) { // We can't cover difference of more // than n with 2n bits if (Math.abs(diff) > (end - start + 1) / 2) return; // if all bits are filled if (start > end) { // if sum of first n bits and // last n bits are same if (diff == 0) { System.out.print(out); System.out.print(' '); } return; } // fill first bit as 0 and last bit as 1 out[start] = '0'; out[end] = '1'; findAllSequences(diff + 1 out start + 1 end - 1); // fill first and last bits as 1 out[start] = out[end] = '1'; findAllSequences(diff out start + 1 end - 1); // fill first and last bits as 0 out[start] = out[end] = '0'; findAllSequences(diff out start + 1 end - 1); // fill first bit as 1 and last bit as 0 out[start] = '1'; out[end] = '0'; findAllSequences(diff - 1 out start + 1 end - 1); } // Driver program public static void main (String[] args) { // input number int n = 2; // allocate string containing 2*n characters char[] out = new char[2 * n + 1]; // null terminate output array out[2 * n] = ' '; findAllSequences(0 out 0 2*n - 1); } } // This code is contributed by Pramod Kumar
Python3 # Python3 program to print even length binary sequences # whose sum of first and second half bits is same # Function to print even length binary sequences # whose sum of first and second half bits is same # diff --> difference between sums of first n bits # and last n bits # out --> output array # start --> starting index # end --> ending index def findAllSequences(diff out start end): # We can't cover difference of more than n with 2n bits if (abs(diff) > (end - start + 1) // 2): return; # if all bits are filled if (start > end): # if sum of first n bits and last n bits are same if (diff == 0): print(''.join(list(out))end=' '); return; # fill first bit as 0 and last bit as 1 out[start] = '0'; out[end] = '1'; findAllSequences(diff + 1 out start + 1 end - 1); # fill first and last bits as 1 out[start] = out[end] = '1'; findAllSequences(diff out start + 1 end - 1); # fill first and last bits as 0 out[start] = out[end] = '0'; findAllSequences(diff out start + 1 end - 1); # fill first bit as 1 and last bit as 0 out[start] = '1'; out[end] = '0'; findAllSequences(diff - 1 out start + 1 end - 1); # Driver program # input number n = 2; # allocate string containing 2*n characters out=['']*(2*n); findAllSequences(0 out 0 2*n - 1); # This code is contributed by mits
C# // C# program to print even length binary // sequences whose sum of first and second // half bits is same using System; class GFG { // Function to print even length binary // sequences whose sum of first and // second half bits is same // diff --> difference between sums of // first n bits // and last n bits // out --> output array // start --> starting index // end --> ending index static void findAllSequences(int diff char []outt int start int end) { // We can't cover difference of // more than n with 2n bits if (Math.Abs(diff) > (end - start + 1) / 2) return; // if all bits are filled if (start > end) { // if sum of first n bits and // last n bits are same if (diff == 0) { Console.Write(outt); Console.Write(' '); } return; } // fill first bit as 0 and last bit // as 1 outt[start] = '0'; outt[end] = '1'; findAllSequences(diff + 1 outt start + 1 end - 1); // fill first and last bits as 1 outt[start] = outt[end] = '1'; findAllSequences(diff outt start + 1 end - 1); // fill first and last bits as 0 outt[start] = outt[end] = '0'; findAllSequences(diff outt start + 1 end - 1); // fill first bit as 1 and last // bit as 0 outt[start] = '1'; outt[end] = '0'; findAllSequences(diff - 1 outt start + 1 end - 1); } // Driver program public static void Main () { // input number int n = 2; // allocate string containing 2*n // characters char []outt = new char[2 * n + 1]; // null terminate output array outt[2 * n] = ' '; findAllSequences(0 outt 0 2*n - 1); } } // This code is contributed by nitin mittal.
PHP // PHP program to print even length binary sequences // whose sum of first and second half bits is same // Function to print even length binary sequences // whose sum of first and second half bits is same // diff --> difference between sums of first n bits // and last n bits // out --> output array // start --> starting index // end --> ending index function findAllSequences($diff $out $start $end) { // We can't cover difference of more than n with 2n bits if (abs($diff) > (int)(($end - $start + 1) / 2)) return; // if all bits are filled if ($start > $end) { // if sum of first n bits and last n bits are same if ($diff == 0) print(implode(''$out).' '); return; } // fill first bit as 0 and last bit as 1 $out[$start] = '0'; $out[$end] = '1'; findAllSequences($diff + 1 $out $start + 1 $end - 1); // fill first and last bits as 1 $out[$start] = $out[$end] = '1'; findAllSequences($diff $out $start + 1 $end - 1); // fill first and last bits as 0 $out[$start] = $out[$end] = '0'; findAllSequences($diff $out $start + 1 $end - 1); // fill first bit as 1 and last bit as 0 $out[$start] = '1'; $out[$end] = '0'; findAllSequences($diff - 1 $out $start + 1 $end - 1); } // Driver program // input number $n = 2; // allocate string containing 2*n characters $out=array_fill(02*$n''); findAllSequences(0 $out 0 2*$n - 1); // This code is contributed by chandan_jnu ?> JavaScript <script> // JavaScript program to print even length binary // sequences whose sum of first and second // half bits is same // Function to print even length binary // sequences whose sum of first and // second half bits is same // diff --> difference between sums of // first n bits // and last n bits // out --> output array // start --> starting index // end --> ending index function findAllSequences(diff outt start end) { // We can't cover difference of // more than n with 2n bits if (Math.abs(diff) > parseInt((end - start + 1) / 2 10)) return; // if all bits are filled if (start > end) { // if sum of first n bits and // last n bits are same if (diff == 0) { document.write(outt.join('')); document.write(' '); } return; } // fill first bit as 0 and last bit // as 1 outt[start] = '0'; outt[end] = '1'; findAllSequences(diff + 1 outt start + 1 end - 1); // fill first and last bits as 1 outt[start] = outt[end] = '1'; findAllSequences(diff outt start + 1 end - 1); // fill first and last bits as 0 outt[start] = outt[end] = '0'; findAllSequences(diff outt start + 1 end - 1); // fill first bit as 1 and last // bit as 0 outt[start] = '1'; outt[end] = '0'; findAllSequences(diff - 1 outt start + 1 end - 1); } // input number let n = 2; // allocate string containing 2*n // characters let outt = new Array(2 * n + 1); // null terminate output array outt[2 * n] = ' '; findAllSequences(0 outt 0 2*n - 1); </script>
Изход
0101 1111 1001 0110 0000 1010
Времева сложност: O((4 ^ N )* N)
4^N поради 4 рекурсивни извиквания и N (опростено от 2N) за времето, прекарано в отпечатване на низове с размер 2N
Помощно пространство: O(N)
Има друг подход, чрез който генерираме всички възможни низове с дължина n и ги съхраняваме в списък с индекс, представляващ тяхната сума. След това преминаваме през всеки списък и генерираме низовете с размер 2n, като отпечатваме всеки низ с всички останали низове в списъка, които дават същата стойност.
C++// C++ program to implement the approach #include using namespace std; //function that generates the sequence void generateSequencesWithSum( int n vector<vector<string> >& sumToString vector<string> sequence int sumSoFar) { // Base case if there are no more binary digits to // include if (n == 0) { // add permutation to list of sequences with sum // corresponding to index string seq = ''; for (int i = 0; i < sequence.size(); i++) { seq = seq + sequence[i]; } vector<string> x = sumToString[sumSoFar]; x.push_back(seq); sumToString[sumSoFar] = x; return; } // Generate sequence +0 sequence.push_back('0'); generateSequencesWithSum(n - 1 sumToString sequence sumSoFar); sequence.erase(sequence.begin()); // Generate sequence +1 sequence.push_back('1'); generateSequencesWithSum(n - 1 sumToString sequence sumSoFar + 1); sequence.erase(sequence.begin()); } // function to form permutations of the sequences void permuteSequences(vector<vector<string> > sumToString) { // There are 2^n substring in this list of lists for (int sumIndexArr = 0; sumIndexArr < sumToString.size(); sumIndexArr++) { // Append for (int sequence1 = 0; sequence1 < sumToString[sumIndexArr].size(); sequence1++) { for (int sequence2 = 0; sequence2 < sumToString[sumIndexArr].size(); sequence2++) { if (sumIndexArr == sumToString.size() - 1 && sequence1 == sumToString[sumIndexArr] .size() - 1 && sequence2 == sumToString[sumIndexArr] .size() - 1) { cout << '1111 '; } else { cout << sumToString[sumIndexArr] [sequence1] + sumToString[sumIndexArr] [sequence2] << ' '; } } } } } // function that finds all the subsequences void findAllSequences(int n) { vector<vector<string> > sumToString; for (int i = 0; i < n + 1; i++) { sumToString.push_back( vector<string>()); // list of strings // where index // represents sum } generateSequencesWithSum(n sumToString vector<string>() 0); permuteSequences(sumToString); } // Driver Code int main() { // Function Call findAllSequences(2); return 0; } // this code is contributed by phasing17
Java // Java program to implement the approach import java.util.*; class GFG { // function that finds all the subsequences static void findAllSequences(int n) { ArrayList<ArrayList<String> > sumToString = new ArrayList<ArrayList<String> >(); for (int i = 0; i < n + 1; i++) { sumToString.add( new ArrayList<String>()); // list of strings // where index // represents sum } generateSequencesWithSum( n sumToString new ArrayList<String>() 0); permuteSequences(sumToString); } static void generateSequencesWithSum( int n ArrayList<ArrayList<String> > sumToString ArrayList<String> sequence int sumSoFar) { // Base case if there are no more binary digits to // include if (n == 0) { // add permutation to list of sequences with sum // corresponding to index String seq = ''; for (int i = 0; i < sequence.size(); i++) { seq = seq + sequence.get(i); } ArrayList<String> x = sumToString.get(sumSoFar); x.add(seq); sumToString.set(sumSoFar x); return; } // Generate sequence +0 sequence.add('0'); generateSequencesWithSum(n - 1 sumToString sequence sumSoFar); sequence.remove(0); // Generate sequence +1 sequence.add('1'); generateSequencesWithSum(n - 1 sumToString sequence sumSoFar + 1); sequence.remove(0); } // function to form permutations of the sequences static void permuteSequences( ArrayList<ArrayList<String> > sumToString) { // There are 2^n substring in this list of lists for (int sumIndexArr = 0; sumIndexArr < sumToString.size(); sumIndexArr++) { // Append for (int sequence1 = 0; sequence1 < sumToString.get(sumIndexArr).size(); sequence1++) { for (int sequence2 = 0; sequence2 < sumToString.get(sumIndexArr).size(); sequence2++) { if (sumIndexArr == sumToString.size() - 1 && sequence1 == sumToString .get(sumIndexArr) .size() - 1 && sequence2 == sumToString .get(sumIndexArr) .size() - 1) { System.out.print('1111'); } else { System.out.println( sumToString.get(sumIndexArr) .get(sequence1) + sumToString.get(sumIndexArr) .get(sequence2)); } } } } } // Driver Code public static void main(String[] args) { // Function Call findAllSequences(2); } // this code is contributed by phasing17 }
Python3 def findAllSequences(n): sumToString = [[] for x in range(n+1)] # list of strings where index represents sum generateSequencesWithSum(n sumToString [] 0) permuteSequences(sumToString) def generateSequencesWithSum(n sumToString sequence sumSoFar): #Base case if there are no more binary digits to include if n == 0: sumToString[sumSoFar].append(''.join(sequence)) #add permutation to list of sequences with sum corresponding to index return #Generate sequence +0 sequence.append('0') generateSequencesWithSum(n-1 sumToString sequence sumSoFar) sequence.pop() #Generate sequence +1 sequence.append('1') generateSequencesWithSum(n-1 sumToString sequence sumSoFar+1) sequence.pop() def permuteSequences(sumToString): #There are 2^n substring in this list of lists for sumIndexArr in sumToString: # Append for sequence1 in sumIndexArr: for sequence2 in sumIndexArr: print(sequence1 + sequence2) findAllSequences(2) #Contribution by Xavier Jean Baptiste
C# using System; using System.Collections.Generic; class GFG { static void findAllSequences(int n) { List<List<string>> sumToString = new List<List<string>>(); for(int i = 0; i < n + 1; i++) { sumToString.Add(new List<string>()); // list of strings where index represents sum } generateSequencesWithSum(n sumToString new List<string>() 0); permuteSequences(sumToString); } static void generateSequencesWithSum(int n List<List<string>> sumToString List<string> sequence int sumSoFar) { // Base case if there are no more binary digits to include if(n == 0) { //add permutation to list of sequences with sum corresponding to index string seq = ''; for(int i = 0; i < sequence.Count; i++) { seq = seq + sequence[i]; } sumToString[sumSoFar].Add(seq); return; } // Generate sequence +0 sequence.Add('0'); generateSequencesWithSum(n-1 sumToString sequence sumSoFar); sequence.RemoveAt(0); // Generate sequence +1 sequence.Add('1'); generateSequencesWithSum(n-1 sumToString sequence sumSoFar+1); sequence.RemoveAt(0); } static void permuteSequences(List<List<string>> sumToString) { // There are 2^n substring in this list of lists for(int sumIndexArr = 0; sumIndexArr < sumToString.Count; sumIndexArr++) { // Append for(int sequence1 = 0; sequence1 < sumToString[sumIndexArr].Count; sequence1++) { for(int sequence2 = 0; sequence2 < sumToString[sumIndexArr].Count; sequence2++) { if(sumIndexArr == sumToString.Count-1 && sequence1 == sumToString[sumIndexArr].Count-1 && sequence2 == sumToString[sumIndexArr].Count-1) { Console.Write('1111'); } else { Console.WriteLine(sumToString[sumIndexArr][sequence1] + sumToString[sumIndexArr][sequence2]); } } } } } static void Main() { findAllSequences(2); } } // This code is contributed by divyesh072019.
JavaScript <script> function findAllSequences(n) { let sumToString = []; for(let i = 0; i < n + 1; i++) { sumToString.push([]); // list of strings where index represents sum } generateSequencesWithSum(n sumToString [] 0); permuteSequences(sumToString); } function generateSequencesWithSum(n sumToString sequence sumSoFar) { // Base case if there are no more binary digits to include if(n == 0) { //add permutation to list of sequences with sum corresponding to index sumToString[sumSoFar].push(sequence.join('')); return; } // Generate sequence +0 sequence.push('0'); generateSequencesWithSum(n-1 sumToString sequence sumSoFar); sequence.shift(); // Generate sequence +1 sequence.push('1'); generateSequencesWithSum(n-1 sumToString sequence sumSoFar+1); sequence.shift(); } function permuteSequences(sumToString) { // There are 2^n substring in this list of lists for(let sumIndexArr = 0; sumIndexArr < sumToString.length; sumIndexArr++) { // Append for(let sequence1 = 0; sequence1 < sumToString[sumIndexArr].length; sequence1++) { for(let sequence2 = 0; sequence2 < sumToString[sumIndexArr].length; sequence2++) { if(sumIndexArr == sumToString.length-1 && sequence1 == sumToString[sumIndexArr].length-1 && sequence2 == sumToString[sumIndexArr].length-1) { document.write('1111'); } else { document.write(sumToString[sumIndexArr][sequence1] + sumToString[sumIndexArr][sequence2] + ''); } } } } } findAllSequences(2); // This code is contributed by decode2207. </script>
Изход
0000 0101 0110 1001 1010 1111
Анализ на времевата сложност:
генериране на SequencesWithSum = O((2Н)*N)
- 2Н: генерираме цялата пермутация на двоични низове с размер N
- N: преобразува списъка със знаци в низ и съхранява в масив. Това се прави в базовия случай.
permuteSequences = O((2Н) * N!/(N/2)!2* Н)
- 2Н: итерираме през целия генериран низ с размер n
- N!/(N/2)!2: Това е малко предизвикателство за обяснение
нека вземем N = 2 като пример. Нашият масив от възможни последователности с размер n ще бъде:
приоритетна опашка java
| индекс на масива | 1 | 2 | |
| списък от низове | 00 | 0110 | 11 |
В списъка с низове, чийто индекс представлява сумата, получаваме броя на низовете с размер 2n, като използваме формулата 'n select k'. В нашия случай ще бъде nCk *nCk, където k представлява броя на 1s във всяка половина на низа с размер 2n:
k = 0 имаме (2C0)^2 = 1 низ (0000)
k = 1 имаме (2C1)^2 низ = 4 низа(0101 0110 1001 1010)
k = 2 имаме (2c2)^2 = 1 низ (1111)
Получаваме нашия най-дълъг списък от низове, когато k = N/2 следователноНВN/2= N!/[(N/2)! * (N - N/2)!] което опростява доНВN/2= N!/(N/2)!2
Следователно за всеки елемент трябва да преминем през най-многоНВN/2за формиране на струни с дължина 2N
Без официално доказателство, ако начертаем 2^N и N!/(N/2)!2виждаме, че 2Нима по-бърз темп на растеж от последния. Следователно O(2Н* N!/(N/2)2)< O(2Н*2Н) = O(22n) = O(4Н)
Графика на 2^x и nC(n/2)- N: трябва да отпечатаме всеки низ с размер 2N
И накрая, можем да пренебрегнем времевата сложност на generateSequencesWithSum, защото permuteSequence е водещият термин
Времева сложност: O(2Н* N!/(N/2)!2* N) (по-добро от първото решение на O((4^N) * N вижте обяснението по-горе за повече подробности)
Помощно пространство : O(2Н), защото съхраняваме всички пермутации на двоичен низ с размер N
mylivecricket.in
#include using namespace std; class FirstHalf { public: string data; int sum; FirstHalf(string data int sum) { this->data = data; this->sum = sum; } }; // MAP: Key -> sum of bits; Value -> All possible permutation with respective sum map<int vector<string>> mp; // first N-half bits vector<FirstHalf> firstHalf; // function to find sum of the bits from a String int sumOfString(string s) { int sum = 0; // ex: converts '1' to 1 -> (ASCII('1') - ASCII('0') = 1) for(auto c: s) { sum += (c - '0'); } return sum; } void perm(string p char* bin int level int n) { // p: processed string(processed permutation at current level) // bin: {'0' '1'} // l: current level of recursion tree (leaf/solution level = 0) // n: total levels if(level == 0) { // at solution level find sum of the current permutation int sum = sumOfString(p); // store current permutation to firstHalf list firstHalf.push_back(FirstHalf(p sum)); // put current permutation to its respective sum value mp[sum].push_back(p); return; } // generate calls for permutation // working: first solution with all 0s // then replacing last 0 with 1 and so on... for(int i = 0; i < n; i++) { char c = bin[i]; perm(p+c bin level-1 n); } } void result() { int i = 0; for(auto first: firstHalf) { // for each firstHalf string // find sum of the bits of current string int sum = first.sum; // retrieve respective secondHalf from map based on sum key vector<string> secondHalf = mp[sum]; for(auto second: secondHalf) { // append first and second half and print cout << first.data + second << ' '; // after every 6 solution line is changed in output // only for formatting below lines could be removed i++; if(i % 6 == 0) cout << endl; } } } int main(){ char up[2] = {'0' '1'}; int n = 2; string x = ''; perm(x up n n); result(); return 0; } // This code is contributed by Nidhi goel.
Java import java.util.*; class GFG { static class FirstHalf { String data; int sum; FirstHalf(String data int sum) { this.data = data; this.sum = sum; } } //MAP: Key -> sum of bits; Value -> All possible permutation with respective sum static Map<Integer ArrayList<String>> map = new HashMap<>(); //first N-half bits static List<FirstHalf> firstHalf = new ArrayList<>(); //function to find sum of the bits from a String public static int sumOfString(String s) { int sum = 0; //ex: converts '1' to 1 -> (ASCII('1') - ASCII('0') = 1) for(char c: s.toCharArray()) { sum += c - '0'; } return sum; } public static void perm(String p char[] bin int level int n) { //p: processed string(processed permutation at current level) //bin: {'0' '1'} //l: current level of recursion tree (leaf/solution level = 0) //n: total levels if(level == 0) { //at solution level find sum of the current permutation int sum = sumOfString(p); //store current permutation to firstHalf list firstHalf.add(new FirstHalf(p sum)); //put current permutation to its respective sum value map.putIfAbsent(sum new ArrayList<String>()); map.get(sum).add(p); return; } //generate calls for permutation //working: first solution with all 0s then replacing last 0 with 1 and so on... for(char c: bin) { perm(p+c bin level-1 n); } } public static void result() { int i = 0; for(FirstHalf first: firstHalf) { //for each firstHalf string //find sum of the bits of current string int sum = first.sum; //retrieve respective secondHalf from map based on sum key ArrayList<String> secondHalf = map.get(sum); for(String second: secondHalf) { //append first and second half and print System.out.print(first.data+second+' '); //after every 6 solution line is changed in output //only for formatting below lines could be removed i++; if(i % 6 == 0) System.out.println(); } } } public static void main(String[] args) { char[] up = {'0' '1'}; int n = 2; perm('' up n n); result(); } } //Code contributed by Animesh Singh
Python3 # Python code implementation class FirstHalf: def __init__(self data sum): self.data = data self.sum = sum # MAP: Key -> sum of bits; Value -> All possible permutation with respective sum map = {} # first N-half bits firstHalf = [] # function to find sum of the bits from a String def sumOfString(s): sum = 0 # ex: converts '1' to 1 -> (ASCII('1') - ASCII('0') = 1) for i in range(len(s)): sum += ord(s[i]) - ord('0') return sum def perm(p bin level n): # p: processed string(processed permutation at current level) # bin: ['0' '1'] # l: current level of recursion tree (leaf/solution level = 0) # n: total levels if level == 0: # at solution level find sum of the current permutation sum = sumOfString(p) # store current permutation to firstHalf list firstHalf.append(FirstHalf(p sum)) # put current permutation to its respective sum value if sum not in map: map[sum] = [] map[sum].append(p) return # generate calls for permutation # working: first solution with all 0s then replacing last 0 with 1 and so on... for i in range(len(bin)): perm(p+bin[i] bin level-1 n) def result(): i = 0 for j in range(len(firstHalf)): # for each firstHalf string # find sum of the bits of current string sum = firstHalf[j].sum # retrieve respective secondHalf from map based on sum key secondHalf = map[sum] for k in range(len(secondHalf)): # append first and second half and print print(firstHalf[j].data + secondHalf[k] + ' ' end='') # after every 6 solution line is changed in output # only for formatting below lines could be removed i = i + 1 if(i % 6 == 0): print('n') up = ['0' '1'] n = 2 perm('' up n n) result() # The code is contributed by Nidhi goel.
C# using System; using System.Collections.Generic; class FirstHalf { public string data; public int sum; public FirstHalf(string data int sum) { this.data = data; this.sum = sum; } } class Gfg { // MAP: Key -> sum of bits; Value -> All possible permutation with respective sum static Dictionary<int List<string>> mp = new Dictionary<int List<string>>(); // first N-half bits static List<FirstHalf> firstHalf = new List<FirstHalf>(); // function to find sum of the bits from a String static int sumOfString(string s) { int sum = 0; // ex: converts '1' to 1 -> (ASCII('1') - ASCII('0') = 1) foreach (char c in s) { sum += (c - '0'); } return sum; } static void perm(string p char[] bin int level int n) { // p: processed string(processed permutation at current level) // bin: {'0' '1'} // l: current level of recursion tree (leaf/solution level = 0) // n: total levels if (level == 0) { // at solution level find sum of the current permutation int sum = sumOfString(p); // store current permutation to firstHalf list firstHalf.Add(new FirstHalf(p sum)); // put current permutation to its respective sum value if (mp.ContainsKey(sum)) { mp[sum].Add(p); } else { mp.Add(sum new List<string> { p }); } return; } // generate calls for permutation // working: first solution with all 0s // then replacing last 0 with 1 and so on... for (int i = 0; i < n; i++) { char c = bin[i]; perm(p + c bin level - 1 n); } } static void result() { int i = 0; foreach (FirstHalf first in firstHalf) { // for each firstHalf string // find sum of the bits of current string int sum = first.sum; // retrieve respective secondHalf from map based on sum key List<string> secondHalf = mp[sum]; foreach (string second in secondHalf) { // append first and second half and print Console.Write(first.data + second + ' '); // after every 6 solution line is changed in output // only for formatting below lines could be removed i++; if (i % 6 == 0) Console.WriteLine(); } } } static void Main(string[] args) { char[] up = { '0' '1' }; int n = 2; string x = ''; perm(x up n n); result(); } }
JavaScript class FirstHalf { constructor(data sum) { this.data = data; this.sum = sum; } } // MAP: Key -> sum of bits; Value -> All possible permutation with respective sum const map = new Map(); // first N-half bits const firstHalf = []; // function to find sum of the bits from a String function sumOfString(s) { let sum = 0; //ex: converts '1' to 1 -> (ASCII('1') - ASCII('0') = 1) for(let i = 0; i < s.length; i++) { sum += s.charCodeAt(i) - '0'.charCodeAt(0); } return sum; } function perm(p bin level n) { // p: processed string(processed permutation at current level) // bin: ['0' '1'] // l: current level of recursion tree (leaf/solution level = 0) // n: total levels if(level == 0) { // at solution level find sum of the current permutation let sum = sumOfString(p); // store current permutation to firstHalf list firstHalf.push(new FirstHalf(p sum)); // put current permutation to its respective sum value if(!map.has(sum)) map.set(sum []); map.get(sum).push(p); return; } // generate calls for permutation // working: first solution with all 0s then replacing last 0 with 1 and so on... for(let i = 0; i < bin.length; i++) { perm(p+bin[i] bin level-1 n); } } function result() { let i = 0; for(let j = 0; j < firstHalf.length; j++) { // for each firstHalf string // find sum of the bits of current string let sum = firstHalf[j].sum; // retrieve respective secondHalf from map based on sum key let secondHalf = map.get(sum); for(let k = 0; k < secondHalf.length; k++) { // append first and second half and print process.stdout.write(firstHalf[j].data + secondHalf[k] + ' '); // after every 6 solution line is changed in output // only for formatting below lines could be removed i++; if(i % 6 == 0) process.stdout.write('n'); } } } const up = ['0' '1']; const n = 2; perm('' up n n); result();
Изход
0000 0101 0110 1001 1010 1111
Алгоритъм:
1. Генерирайте всички двоични пермутации с размер n
2. Изчислете сумата от битовете на всяка пермутация и я запомнете за втората половина
[например: за n=2 не забравяйте, че има два низа със сума = 1, т.е. '01' '10' ]
3. Повторете всички генерирани пермутации и за всяка от тях добавете втората половина според сумата от битовете
Анализ на времевата сложност:
vlc изтегляне от youtube
sumOfString() = O(N) : преминава всеки бит и го добавя към сумата
къдрене () = O(2Н* Н)
2N * N: генерираме всички пермутации на двоични битове с размер N и намираме сумата от битовете за всяка пермутация
резултат() = O((2Н) * (N!/(N/2)!)2)
2Н: итерираме през всички възможни пермутации с размер N (първа половина)
NCN/2 = N!/(N/2)!2: (максимален размер за втората половина) : обяснение по-долу:
in.next java
нека вземем N = 4 като пример:
//Hash-Map изглежда така
0 -> [0000] ................................(размер на списък: 4C0 = 1)
1 -> [0001 0010 0100 1000] ................................(размер на списъка: 4C1 = 4)
2 -> [0011 0101 0110 1001 1010 1100] ................................(размер на списък: 4C2 = 6)
3 -> [0111 1011 1101 1110] ................................(размер на списъка: 4C3 = 4)
4 -> [1111] ................................(размер на списъка: 4C4 = 1)
Тук наблюдаваме, че всеки списък има размер N изберете ключ, който ще бъде максимален при N изберете N/2
Тъй като итерираме всички 2Нпермутации и добавяне на втора половина от картата. Картата има списък с максимален размер на позиция N/2.
Най-лошият случай възниква в позиция N/2, където трябва да пресечем NCN/2 = N!/(N/2)!2пермутации.
Времева сложност: O(2Н* N!/(N/2)!2)
Помощно пространство: O(2Н) защото съхраняваме всички пермутации на двоичен низ с размер N