logo

Java Graph

В Java, Графика е структура от данни, която съхранява определени данни. Концепцията на графика е откраднат от математиката, която отговаря на нуждите на областта на компютърните науки. Представлява мрежа, която свързва множество точки една с друга. В този раздел ще научим подробно структурата на данните на Java Graph. Освен това ще научим видове Графика , тяхното изпълнение и обхождане над графиката.

Графика

А графика е графична терминология

Верх: Върховете са точките, които свързват ръбовете. Той представлява данните. Известен е още като възел. Обозначава се с кръг и трябва да бъде етикетиран. За да се изгради графика, трябва да има поне възел. Например къща, автобусна спирка и др.

Ръб, край: Ръбът е линия, която свързва два върха. Той представлява връзката между върховете. Краищата са обозначени с линия. Например пътека до автобусната спирка от къщата ви.

подниз в java

Тегло: Етикетирана е до ръба. Например разстоянието между два града е 100 км, тогава разстоянието се нарича тегло за ръба.

Път: Пътят е начин за достигане до дестинация от началната точка в последователност.

глобални променливи js

Видове графики

    Претеглена графика:В претеглен график всеки ръб съдържа някои данни (тегло), като разстояние, тегло, височина и т.н. Означава се като w(e). Използва се за изчисляване на цената на преминаване от един връх до друг. Следната фигура представлява претеглена графика.
    Java Graph Непретеглена графика:Графика, в която ръбовете не са свързани с никаква стойност, се нарича непретеглена графика. Следващата фигура представлява непретеглена графика.
    Java Graph Насочена графика:Графика, в която ръбовете представляват посока, се нарича насочена графа. В насочена графика използваме стрелки вместо линии (ръбове). Посоката обозначава пътя за достигане от един възел до друг възел. Обърнете внимание, че в насочена графика можем да се движим в една или в двете посоки. Следващата фигура представлява насочен график.
    Java Graph Неориентирана графика:Граф, в който ръбовете са двупосочни, се нарича неориентиран граф. В неориентиран график можем да преминем във всяка посока. Имайте предвид, че можем да използваме същия път за връщане, през който сме преминали. Докато в насочения график не можем да се върнем от същия път.
    Java Graph Свързана графика:Графът се нарича свързан, ако съществува поне един път между всяка двойка върхове. Обърнете внимание, че граф само с връх е свързан граф.
    Java Graph
    Има два вида свързани графики.
      Седмична свързана графика:Графа, в която възлите не могат да бъдат посетени от един път, се нарича седмично свързана графа.
      Java Graph Силно свързана графика:Граф, в който възлите могат да бъдат посетени от един път, се нарича силно свързан граф.
      Java Graph
    Прекъсната графика:Казва се, че графът е несвързан, ако няма път между двойка върхове, се нарича несвързан граф. Несвързаният граф може да се състои от два или повече свързани графа.
    Java Graph Мулти графика:Графика, която има множество ребра, свързващи една и съща двойка възли. Следващата фигура представлява мултиграф.
    Java Graph Плътна графика:Граф, в който броят на ребрата е близък до максималния брой на ребрата, се нарича плътен граф. Следващата фигура представлява плътна графика.
    Java Graph Разредена графика:Графа, в която броят на ребрата е близък до минималния брой ръбове, се нарича разредена графа. Може да бъде несвързана графика. Следващата фигура представлява разредена графика.
    Java Graph

Внедряване на Java Graph

За внедряване на графики в Java ще използваме Generic клас. За да създадем обект от Java Generic клас, използваме следния синтаксис:

 BaseType obj = new BaseType (); 

Не забравяйте, че не можем да използваме примитивен тип за тип параметър.

Нека създадем Java програма, която имплементира Graph.

GraphImplementation.java

 import java.util.*; class Graph { //creating an object of the Map class that stores the edges of the graph private Map<t, list> map = new HashMap(); //the method adds a new vertex to the graph public void addNewVertex(T s) { map.put(s, new LinkedList()); } //the method adds an edge between source and destination public void addNewEdge(T source, T destination, boolean bidirectional) { // if (!map.containsKey(source)) addNewVertex(source); if (!map.containsKey(destination)) addNewVertex(destination); map.get(source).add(destination); if (bidirectional == true) { map.get(destination).add(source); } } //the method counts the number of vertices public void countVertices() { System.out.println(&apos;Total number of vertices: &apos;+ map.keySet().size()); } //the method counts the number of edges public void countEdges(boolean bidirection) { //variable to store number of edges int count = 0; for (T v : map.keySet()) { count = count + map.get(v).size(); } if (bidirection == true) { count = count / 2; } System.out.println(&apos;Total number of edges: &apos;+ count); } //checks a graph has vertex or not public void containsVertex(T s) { if (map.containsKey(s)) { System.out.println(&apos;The graph contains &apos;+ s + &apos; as a vertex.&apos;); } else { System.out.println(&apos;The graph does not contain &apos;+ s + &apos; as a vertex.&apos;); } } //checks a graph has edge or not //where s and d are the two parameters that represent source(vertex) and destination (vertex) public void containsEdge(T s, T d) { if (map.get(s).contains(d)) { System.out.println(&apos;The graph has an edge between &apos;+ s + &apos; and &apos; + d + &apos;.&apos;); } else { System.out.println(&apos;There is no edge between &apos;+ s + &apos; and &apos; + d + &apos;.&apos;); } } //prints the adjacencyS list of each vertex //here we have overridden the toString() method of the StringBuilder class @Override public String toString() { StringBuilder builder = new StringBuilder(); //foreach loop that iterates over the keys for (T v : map.keySet()) { builder.append(v.toString() + &apos;: &apos;); //foreach loop for getting the vertices for (T w : map.get(v)) { builder.append(w.toString() + &apos; &apos;); } builder.append(&apos;
&apos;); } return (builder.toString()); } } //creating a class in which we have implemented the driver code public class GraphImplementation { public static void main(String args[]) { //creating an object of the Graph class Graph graph=new Graph(); //adding edges to the graph graph.addNewEdge(0, 1, true); graph.addNewEdge(0, 4, true); graph.addNewEdge(1, 2, true); graph.addNewEdge(1, 3, false); graph.addNewEdge(1, 4, true); graph.addNewEdge(2, 3, true); graph.addNewEdge(2, 4, true); graph.addNewEdge(3, 0, true); graph.addNewEdge(2, 0, true); //prints the adjacency matrix that represents the graph System.out.println(&apos;Adjacency List for the graph:
&apos;+ graph.toString()); //counts the number of vertices in the graph graph.countVertices(); //counts the number of edges in the graph graph.countEdges(true); //checks whether an edge is present or not between the two specified vertices graph.containsEdge(3, 4); graph.containsEdge(2, 4); //checks whether vertex is present or not graph.containsVertex(3); graph.containsVertex(5); } } </t,>

Изход:

Java Graph

Внедряване на насочен граф

DirectedGraph.java

команда chown
 import java.util.*; //Creating a class named Edge that stores the edges of the graph class Edge { //the variable source and destination represent the vertices int s, d; //creating a constructor of the class Edge Edge(int s, int d) { this.s = s; this.d = d; } } //a class to represent a graph object class Graph { //note that we have created an adjacency list (i.e. List of List) List<list> adjlist = new ArrayList(); //creating a constructor of the class Graph that construct a graph public Graph(List edges) { int n = 0; //foreach loop that iterates over the edge for (Edge e: edges) { //determines the maximum numbered vertex n = Integer.max(n, Integer.max(e.s, e.d)); } //reserve the space for the adjacency list for (int i = 0; i <= 1 n; i++) { adjlist.add(i, new arraylist()); } adds the edges to undirected graph for (edge current: edges) allocate node in adjacency list from source destination adjlist.get(current.s).add(current.d); function print representation of a public static void showgraph(graph graph) int s="0;" determines size n="graph.adjlist.size();" while (s ' + d ')	'); system.out.println(); increments by s++; implementing driver code class directedgraph main (string args[]) creating edge(0, 1), edge(1, 2), edge(2, 4), edge(4, 1),new edge(3, 5), edge(5, 1)); construct given graph(edges); prints that represents graph.showgraph(graph); < pre> <p> <strong>Output:</strong> </p> <img src="//techcodeview.com/img/java-tutorial/19/java-graph-13.webp" alt="Java Graph"> <h2>Implementation of Weighted Graph</h2> <p> <strong>WeightedGraph.java</strong> </p> <pre> import java.util.*; //the class stores the edges of the graph class Edge { int s, d, w; //creating a constructor of the class Edge Edge(int src, int dest, int weight) { this.s = src; this.d = dest; this.w = weight; } } //a class to store adjacency list nodes class Node { int value, weight; //creating a constructor of the class Vertex Node(int value, int weight) { this.value = value; this.weight = weight; } //overrides the toString() method @Override public String toString() { return this.value + &apos; (&apos; + this.weight + &apos;)&apos;; } } //a class to represent a graph object class Graph { //note that we have created an adjacency list (i.e. List of List) List<list> adjlist = new ArrayList(); //creating a constructor of the class Graph that creates graph public Graph(List edges) { //find the maximum numbered vertex int n = 0; //iterates over the edges of the graph for (Edge e: edges) { //determines the maximum numbered vertex n = Integer.max(n, Integer.max(e.s, e.d)); } //reserve the space for the adjacency list for (int i = 0; i <= 1 n; i++) { adjlist.add(i, new arraylist()); } adds the edges to undirected graph for (edge e: edges) creating a node (from source destination) in adjacency list adjlist.get(e.s).add(new node(e.d, e.w)); uncomment following statement adj.get(e.dest).add(new node(e.src, e.weight)); method that prints of public static void printgraph(graph graph) int src="0;" n="graph.adjlist.size();" system.out.printf('adjacency is: '); while (src %s	', src, edge); system.out.println(); increments by src++; implementing driver code class weightedgraph main (string args[]) with their associated weight edge(1, 4, 3), edge(4, 2, 5), edge(2, 5, 10), edge(5, 1, 6), edge(3, 9), 1), 2)); creates declared above graph(edges); corresponding graph.printgraph(graph); < pre> <p> <strong>Output:</strong> </p> <img src="//techcodeview.com/img/java-tutorial/19/java-graph-14.webp" alt="Java Graph"> <h2>Graph Traversal</h2> <p>Traversal over the graph means visit each and every vertex and edge at least once. To traverse over the graph, Graph data structure provides two algorithms:</p> <ul> <li>Depth-First Search (DFS)</li> <li>Breadth-First Search (DFS)</li> </ul> <h3>Depth-First Search (DFS)</h3> <p> <a href="/dfs-algorithm">DFS algorithm</a> is a recursive algorithm that is based on the backtracking concept. The algorithm starts from the initial node and searches in depth until it finds the goal node (a node that has no child). Backtracking allows us to move in the backward direction on the same path from which we have traversed in the forward direction.</p> <p>Let&apos;s implement the DFS algorithm in a Java program.</p> <p> <strong>DepthFirstSearch.java</strong> </p> <pre> import java.io.*; import java.util.*; //creates an undirected graph class Graph { //stores the number of vertices private int Vertices; //creates a linked list for the adjacency list of the graph private LinkedList adjlist[]; //creating a constructor of the Graph class Graph(int count_v) { //assigning the number of vertices to the passed parameter Vertices = count_v; adjlist = new LinkedList[count_v]; //loop for creating the adjacency lists for (int i=0; i<count_v; 3 10 ++i) adjlist[i]="new" linkedlist(); } method that adds a new edge to the graph void addnewedge(int v, int w) { adjlist[v].add(w); add w v's list. logic of dfs traversal starts from root node traversaldfs(int boolean vnodelist[]) if current (root node) is visited, it vnodelist vnodelist[v]="true;" system.out.print(v+' '); detrmines negihboring nodes iterates over list iterator i="adjlist[v].listIterator();" while (i.hasnext()) returns next element in iteration and store variable n (!vnodelist[n]) calling function performs depth first traversaldfs(n, vnodelist); dfs(int v) creates an array type for visited initially all are unvisited visited[]="new" boolean[vertices]; call recursive traversaldfs() traversaldfs(v, visited); implementing driver code public class depthfirstsearch static main(string args[]) having vertices g="new" graph(10); edges g.addnewedge(1, 2); g.addnewedge(2, 3); g.addnewedge(3, 4); g.addnewedge(4, 5); g.addnewedge(5, 7); 6); print sequencnce which bfs done system.out.println('depth-first is: (as g.dfs(1); < pre> <p> <strong>Output:</strong> </p> <img src="//techcodeview.com/img/java-tutorial/19/java-graph-15.webp" alt="Java Graph"> <h3>Breadth First Search (BFS)</h3> <p> <a href="/bfs-algorithm">BFS algorithm</a> is the most common approach to traverse over the graph. The traversal starts from the source node and scans its neighboring nodes (child of the current node). In short, traverse horizontally and visit all the nodes of the current layer. After that, move to the next layer and perform the same.</p> <p>Let&apos;s implement the BFS algorithm in a Java program.</p> <p> <strong>BreadthFirstSearch.java</strong> </p> <pre> import java.io.*; import java.util.*; //creates an undirected graph class Graph { //stores the number of vertices private int vertices; //creates a linked list for the adjacency list of the graph private LinkedList adjlist[]; //creating a constructor of the Graph class Graph(int count_v) { //assigning the number of vertices to the passed parameter vertices = count_v; adjlist = new LinkedList[count_v]; //loop for creating the adjacency lists for (int i=0; i<count_v; 10 ++i) adjlist[i]="new" linkedlist(); } method that adds a new edge to the graph void addnewedge(int v, int w) { adjlist[v].add(w); traversal starts from root node traversalbfs(int rnode) creates an array of boolean type for visited initially all nodes are unvisited visitednode[]="new" boolean[vertices]; creating another list storing linkedlist vnodelist="new" if current (root node) is visited, add it visitednode[rnode]="true;" inserts into vnodelist.add(rnode); while loop executes until we have (vnodelist.size() !="0)" deque entry queue and process poll() retrieves removes head (first element) this rnode="vnodelist.poll();" system.out.print(rnode+' '); detrmines negihboring iterates over iterator i="adjlist[rnode].listIterator();" (i.hasnext()) returns next element in iteration store variable n checks or not (!visitednode[n]) above if-statement true, visits visitednode[n]="true;" vnodelist.add(n); implementing driver code public class breadthfirstsearch static main(string args[]) having vertices graph(10); edges graph.addnewedge(2, 5); graph.addnewedge(3, graph.addnewedge(1, 2); 4); graph.addnewedge(4, 1); graph.addnewedge(6, graph.addnewedge(5, 6); 3); graph.addnewedge(7, 7); print sequence which bfs execute system.out.println('breadth-first is: graph.traversalbfs(2); < pre> <p> <strong>Output:</strong> </p> <img src="//techcodeview.com/img/java-tutorial/19/java-graph-16.webp" alt="Java Graph"> <hr></count_v;></pre></count_v;></pre></=></list></pre></=></list>