Вече обсъдихме Двоично резбовано двоично дърво .
Вмъкването в двоично резбовано дърво е подобно на вмъкването в двоично дърво, но ще трябва да коригираме нишките след вмъкване на всеки елемент.
C представяне на възел с двоична нишка:
struct Node { struct Node *left *right; int info; // false if left pointer points to predecessor // in Inorder Traversal boolean lthread; // false if right pointer points to successor // in Inorder Traversal boolean rthread; }; В следващото обяснение разгледахме Двоично дърво за търсене (BST) за вмъкване, тъй като вмъкването се определя от някои правила в BST.
Нека tmp е нововмъкнатият възел . Може да има три случая по време на вмъкване:
Случай 1: Вмъкване в празно дърво
Както левият, така и десният указател на tmp ще бъдат зададени на NULL и новият възел става корен.
cp команда в linux
root = tmp; tmp -> left = NULL; tmp -> right = NULL;
Случай 2: Когато нов възел е вмъкнат като ляво дете
След като вмъкнем възела на правилното му място, трябва да направим лявата и дясната нишка да сочат съответно към предшественика и наследника по ред. Възелът, който беше наследник по ред . Така че лявата и дясната нишка на новия възел ще бъдат-
knn
tmp -> left = par ->left; tmp -> right = par;
Преди вмъкването левият указател на родителя беше нишка, но след вмъкването ще бъде връзка, сочеща към новия възел.
par -> lthread = false; par -> left = temp;
Следващият пример показва възел, който се вмъква като ляво дете на своя родител.

След въвеждане на 13

Предшественикът на 14 става предшественик на 13, така че лявата нишка от 13 сочи към 10.
Наследникът на 13 е 14, така че дясната нишка от 13 сочи към лявото дете, което е 13.
Левият показалец на 14 не е нишка, сега той сочи към ляво дете, което е 13.
Случай 3: Когато нов възел е вмъкнат като правилния дъщерен
Родителят на tmp е неговият предшественик по ред. Възелът, който е бил наследник по ред на родителя, сега е наследник по ред на този възел tmp. Така че лявата и дясната нишка на новия възел ще бъдат-
js замяна
tmp -> left = par; tmp -> right = par -> right;
Преди вмъкването десният указател на родителя беше нишка, но след вмъкването ще бъде връзка, сочеща към новия възел.
par -> rthread = false; par -> right = tmp;
Следващият пример показва възел, който се вмъква като дясно дете на своя родител.

След 15 вмъкнати

нов ред python
Наследникът на 14 става наследник на 15, така че дясната нишка от 15 точки до 16
Предшественикът на 15 е 14, така че лявата нишка от 15 сочи към 14.
Десният показалец на 14 не е нишка, сега той сочи към дясно дете, което е 15.
Реализация на C++ за вмъкване на нов възел в Threaded Binary Search Tree:
като стандартна BST вложка търсим ключовата стойност в дървото. Ако ключът вече е наличен, тогава се връщаме, в противен случай новият ключ се вмъква в точката, където търсенето прекратява. В BST търсенето прекратява или когато намерим ключа, или когато достигнем NULL ляв или десен указател. Тук всички леви и десни NULL указатели се заменят с нишки, с изключение на левия указател на първия възел и десния указател на последния възел. Така че тук търсенето ще бъде неуспешно, когато достигнем NULL указател или нишка.
Изпълнение:
C++// Insertion in Threaded Binary Search Tree. #include using namespace std; struct Node { struct Node *left *right; int info; // False if left pointer points to predecessor // in Inorder Traversal bool lthread; // False if right pointer points to successor // in Inorder Traversal bool rthread; }; // Insert a Node in Binary Threaded Tree struct Node *insert(struct Node *root int ikey) { // Searching for a Node with given value Node *ptr = root; Node *par = NULL; // Parent of key to be inserted while (ptr != NULL) { // If key already exists return if (ikey == (ptr->info)) { printf('Duplicate Key !n'); return root; } par = ptr; // Update parent pointer // Moving on left subtree. if (ikey < ptr->info) { if (ptr -> lthread == false) ptr = ptr -> left; else break; } // Moving on right subtree. else { if (ptr->rthread == false) ptr = ptr -> right; else break; } } // Create a new node Node *tmp = new Node; tmp -> info = ikey; tmp -> lthread = true; tmp -> rthread = true; if (par == NULL) { root = tmp; tmp -> left = NULL; tmp -> right = NULL; } else if (ikey < (par -> info)) { tmp -> left = par -> left; tmp -> right = par; par -> lthread = false; par -> left = tmp; } else { tmp -> left = par; tmp -> right = par -> right; par -> rthread = false; par -> right = tmp; } return root; } // Returns inorder successor using rthread struct Node *inorderSuccessor(struct Node *ptr) { // If rthread is set we can quickly find if (ptr -> rthread == true) return ptr->right; // Else return leftmost child of right subtree ptr = ptr -> right; while (ptr -> lthread == false) ptr = ptr -> left; return ptr; } // Printing the threaded tree void inorder(struct Node *root) { if (root == NULL) printf('Tree is empty'); // Reach leftmost node struct Node *ptr = root; while (ptr -> lthread == false) ptr = ptr -> left; // One by one print successors while (ptr != NULL) { printf('%d 'ptr -> info); ptr = inorderSuccessor(ptr); } } // Driver Program int main() { struct Node *root = NULL; root = insert(root 20); root = insert(root 10); root = insert(root 30); root = insert(root 5); root = insert(root 16); root = insert(root 14); root = insert(root 17); root = insert(root 13); inorder(root); return 0; }
Java // Java program Insertion in Threaded Binary Search Tree. import java.util.*; public class solution { static class Node { Node left right; int info; // False if left pointer points to predecessor // in Inorder Traversal boolean lthread; // False if right pointer points to successor // in Inorder Traversal boolean rthread; }; // Insert a Node in Binary Threaded Tree static Node insert( Node root int ikey) { // Searching for a Node with given value Node ptr = root; Node par = null; // Parent of key to be inserted while (ptr != null) { // If key already exists return if (ikey == (ptr.info)) { System.out.printf('Duplicate Key !n'); return root; } par = ptr; // Update parent pointer // Moving on left subtree. if (ikey < ptr.info) { if (ptr . lthread == false) ptr = ptr . left; else break; } // Moving on right subtree. else { if (ptr.rthread == false) ptr = ptr . right; else break; } } // Create a new node Node tmp = new Node(); tmp . info = ikey; tmp . lthread = true; tmp . rthread = true; if (par == null) { root = tmp; tmp . left = null; tmp . right = null; } else if (ikey < (par . info)) { tmp . left = par . left; tmp . right = par; par . lthread = false; par . left = tmp; } else { tmp . left = par; tmp . right = par . right; par . rthread = false; par . right = tmp; } return root; } // Returns inorder successor using rthread static Node inorderSuccessor( Node ptr) { // If rthread is set we can quickly find if (ptr . rthread == true) return ptr.right; // Else return leftmost child of right subtree ptr = ptr . right; while (ptr . lthread == false) ptr = ptr . left; return ptr; } // Printing the threaded tree static void inorder( Node root) { if (root == null) System.out.printf('Tree is empty'); // Reach leftmost node Node ptr = root; while (ptr . lthread == false) ptr = ptr . left; // One by one print successors while (ptr != null) { System.out.printf('%d 'ptr . info); ptr = inorderSuccessor(ptr); } } // Driver Program public static void main(String[] args) { Node root = null; root = insert(root 20); root = insert(root 10); root = insert(root 30); root = insert(root 5); root = insert(root 16); root = insert(root 14); root = insert(root 17); root = insert(root 13); inorder(root); } } //contributed by Arnab Kundu // This code is updated By Susobhan Akhuli
Python3 # Insertion in Threaded Binary Search Tree. class newNode: def __init__(self key): # False if left pointer points to # predecessor in Inorder Traversal self.info = key self.left = None self.right =None self.lthread = True # False if right pointer points to # successor in Inorder Traversal self.rthread = True # Insert a Node in Binary Threaded Tree def insert(root ikey): # Searching for a Node with given value ptr = root par = None # Parent of key to be inserted while ptr != None: # If key already exists return if ikey == (ptr.info): print('Duplicate Key !') return root par = ptr # Update parent pointer # Moving on left subtree. if ikey < ptr.info: if ptr.lthread == False: ptr = ptr.left else: break # Moving on right subtree. else: if ptr.rthread == False: ptr = ptr.right else: break # Create a new node tmp = newNode(ikey) if par == None: root = tmp tmp.left = None tmp.right = None elif ikey < (par.info): tmp.left = par.left tmp.right = par par.lthread = False par.left = tmp else: tmp.left = par tmp.right = par.right par.rthread = False par.right = tmp return root # Returns inorder successor using rthread def inorderSuccessor(ptr): # If rthread is set we can quickly find if ptr.rthread == True: return ptr.right # Else return leftmost child of # right subtree ptr = ptr.right while ptr.lthread == False: ptr = ptr.left return ptr # Printing the threaded tree def inorder(root): if root == None: print('Tree is empty') # Reach leftmost node ptr = root while ptr.lthread == False: ptr = ptr.left # One by one print successors while ptr != None: print(ptr.infoend=' ') ptr = inorderSuccessor(ptr) # Driver Code if __name__ == '__main__': root = None root = insert(root 20) root = insert(root 10) root = insert(root 30) root = insert(root 5) root = insert(root 16) root = insert(root 14) root = insert(root 17) root = insert(root 13) inorder(root) # This code is contributed by PranchalK
C# using System; // C# program Insertion in Threaded Binary Search Tree. public class solution { public class Node { public Node left right; public int info; // False if left pointer points to predecessor // in Inorder Traversal public bool lthread; // False if right pointer points to successor // in Inorder Traversal public bool rthread; } // Insert a Node in Binary Threaded Tree public static Node insert(Node root int ikey) { // Searching for a Node with given value Node ptr = root; Node par = null; // Parent of key to be inserted while (ptr != null) { // If key already exists return if (ikey == (ptr.info)) { Console.Write('Duplicate Key !n'); return root; } par = ptr; // Update parent pointer // Moving on left subtree. if (ikey < ptr.info) { if (ptr.lthread == false) { ptr = ptr.left; } else { break; } } // Moving on right subtree. else { if (ptr.rthread == false) { ptr = ptr.right; } else { break; } } } // Create a new node Node tmp = new Node(); tmp.info = ikey; tmp.lthread = true; tmp.rthread = true; if (par == null) { root = tmp; tmp.left = null; tmp.right = null; } else if (ikey < (par.info)) { tmp.left = par.left; tmp.right = par; par.lthread = false; par.left = tmp; } else { tmp.left = par; tmp.right = par.right; par.rthread = false; par.right = tmp; } return root; } // Returns inorder successor using rthread public static Node inorderSuccessor(Node ptr) { // If rthread is set we can quickly find if (ptr.rthread == true) { return ptr.right; } // Else return leftmost child of right subtree ptr = ptr.right; while (ptr.lthread == false) { ptr = ptr.left; } return ptr; } // Printing the threaded tree public static void inorder(Node root) { if (root == null) { Console.Write('Tree is empty'); } // Reach leftmost node Node ptr = root; while (ptr.lthread == false) { ptr = ptr.left; } // One by one print successors while (ptr != null) { Console.Write('{0:D} 'ptr.info); ptr = inorderSuccessor(ptr); } } // Driver Program public static void Main(string[] args) { Node root = null; root = insert(root 20); root = insert(root 10); root = insert(root 30); root = insert(root 5); root = insert(root 16); root = insert(root 14); root = insert(root 17); root = insert(root 13); inorder(root); } } // This code is contributed by Shrikant13
JavaScript <script> // javascript program Insertion in Threaded Binary Search Tree. class Node { constructor(){ this.left = null this.right = null; this.info = 0; // False if left pointer points to predecessor // in Inorder Traversal this.lthread = false; // False if right pointer points to successor // in Inorder Traversal this.rthread = false; } } // Insert a Node in Binary Threaded Tree function insert(root ikey) { // Searching for a Node with given value var ptr = root; var par = null; // Parent of key to be inserted while (ptr != null) { // If key already exists return if (ikey == (ptr.info)) { document.write('Duplicate Key !n'); return root; } par = ptr; // Update parent pointer // Moving on left subtree. if (ikey < ptr.info) { if (ptr.lthread == false) ptr = ptr.left; else break; } // Moving on right subtree. else { if (ptr.rthread == false) ptr = ptr.right; else break; } } // Create a new node var tmp = new Node(); tmp.info = ikey; tmp.lthread = true; tmp.rthread = true; if (par == null) { root = tmp; tmp.left = null; tmp.right = null; } else if (ikey < (par.info)) { tmp.left = par.left; tmp.right = par; par.lthread = false; par.left = tmp; } else { tmp.left = par; tmp.right = par.right; par.rthread = false; par.right = tmp; } return root; } // Returns inorder successor using rthread function inorderSuccessor(ptr) { // If rthread is set we can quickly find if (ptr.rthread == true) return ptr.right; // Else return leftmost child of right subtree ptr = ptr.right; while (ptr.lthread == false) ptr = ptr.left; return ptr; } // Printing the threaded tree function inorder(root) { if (root == null) document.write('Tree is empty'); // Reach leftmost node var ptr = root; while (ptr.lthread == false) ptr = ptr.left; // One by one print successors while (ptr != null) { document.write(ptr.info+' '); ptr = inorderSuccessor(ptr); } } // Driver Program var root = null; root = insert(root 20); root = insert(root 10); root = insert(root 30); root = insert(root 5); root = insert(root 16); root = insert(root 14); root = insert(root 17); root = insert(root 13); inorder(root); // This code contributed by aashish1995 </script>
Изход
5 10 13 14 16 17 20 30
Времева сложност: O(log N)
чакал срещу вълк
Космическа сложност: O(1) тъй като не се използва допълнително пространство.
Създаване на тест